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Abstract

The maximization of the likelihood and that of the Shannon entropy
are the most famous principles in statistical inference. This paper reveals
notable duality of these two important notions in the Bayesian prediction
problems. We shed light on this duality through the dual Kullback-Leibler
divergence losses. Under the e-divergence loss we find the following: 1)
the minimization of the Bayesian risk is equivalent to the maximization of
the Shannon entropy under a constraint, and 2) the maximization of the
likelihood guarantees the minimum prediction in the sense that it derives
the worst member of a class of nice predictors. An equality implying the
balance of the log-likelihood ratio and the e-divergence plays an important
role, which we call a saddlepoint equality. Dually, under the m-divergence
loss the following findings are obtained: 1) the minimization of the Bayesian
risk is equivalent to the maximization of the likelihood under a constraint,
and 2) the maximization of the Shannon entropy guarantees the minimum
prediction by deriving the worst member of a class of nice predictors. An
equality showing a balance between the Shannon entropy difference and the
m-divergence plays a key role.
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1. Introduction.
The following situations are often encountered in actual Bayesian data anal-

yses. 1) We have a sampling density p(x;µ, τ) and assume a prior density π(µ|τ)
for a parameter µ of interest. We proceed to assume a prior density λ(τ) for
an incidental parameter τ . 2) We have a sampling density p(x;µ) and assume
a prior density π(µ;x0, δ) where x0 and δ are hyper-parameters. We proceed to
assume a hyper-prior density λ(x0, δ).

This can be investigated from a viewpoint of Bayesian model averaging (Hoet-
ing et al., 1999) as follows. Suppose that we have Bayesian models {pξ(x; θ)πξ(θ)}
indexed by ξ ∈ Ξ ⊂ Rl, where x ∈ X ⊂ Rn be a random vector and θ ∈ Θ ⊂ Rm

be a parameter vector. We assume a density λ(ξ) that represents our prior be-
lief for the ξth model, and will call it the averaging prior density. A standard
Bayesian calculation gives the corresponding posterior belief for the ξth model as

λ(ξ|x) =
λ(ξ)mξ(x)

m(x)
, (1.1)

wheremξ(x) is the marginal density in the ξth model andm(x) =
∫
Ξ λ(ξ)mξ(x) dξ.

We will call λ(ξ|x) the averaging posterior density.
We formulate two Bayesian prediction problems

min
q(y|x)

E
[
D
(
q(y|x), pξ(y; θ)

) ∣∣∣ πξ(θ|x)λ(ξ|x)], (1.2)

min
q(y|x)

E
[
D
(
pξ(y; θ), q(y|x)

) ∣∣∣ πξ(θ|x)λ(ξ|x)], (1.3)



where D(q, p) is the Kullback-Leibler divergence, E[f |p] is the expectation of f
with respect to p, and πξ(θ|x) is the posterior density in the ξth model. The two
losses D

(
q(y|x), pξ(y; θ)

)
and D

(
pξ(y; θ), q(y|x)

)
are said to be dual to each other

and called the e-divergence and the m-divergence losses, respectively (Amari &
Nagaoka, 2000). The aim of this paper is to reveal notable dual roles between the
maximization of the likelihood and that of the Shannon entropy. We will shed
light on this intrinsic dualistic structure through the dual divergence losses. This
is a generalization of Ohnishi & Yanagimoto (2013) dealing with the discrete case
of λ(ξ). The two Bayesian prediction problems will be dealt with contrastingly
in §2 and §3.

We rewrite the Bayesian prediction problems (1.2) and (1.3). The correspond-
ing Bayesian prediction problems in the ξth model are

min
q(y|x)

E
[
D
(
q(y|x), pξ(y; θ)

) ∣∣∣ πξ(θ|x)],
min
q(y|x)

E
[
D
(
pξ(y; θ), q(y|x)

) ∣∣∣ πξ(θ|x)].
According to Corcuera & Giummole (1999) and Aitchison (1975), the solutions
are respectively given by

qeξ(y|x) ∝ exp
{
E
[
log pξ(y; θ)

∣∣ πξ(θ|x)]}, (1.4)

qmξ (y|x) = E
[
pξ(y; θ)

∣∣ πξ(θ|x) ]. (1.5)

Using the result in Yanagimoto & Ohnishi (2009), we can show that (1.2) and
(1.3) are equivalent respectively to

min
q(y|x)

E
[
D
(
q(y|x), qeξ(y|x)

) ∣∣∣ λ(ξ|x)], (1.6)

min
q(y|x)

E
[
D
(
qmξ (y|x), q(y|x)

) ∣∣∣ λ(ξ|x)], (1.7)

where λ(ξ|x) is the posterior averaging density defined in (1.1).

2. Results in the e-divergence loss case

Letting h(ξ) be an appropriate density, we investigate a minimization problem

min
q(y|x)

E
[
D
(
q(y|x), qeξ(y|x)

) ∣∣∣ h(ξ)]. (2.1)

Note that the Bayesian prediction problem (1.6) is its special case. We will call
h(ξ) the canonical weight. The following quantities will play vital roles.

Definition 2.1. (i) The e-mixture density of qeξ(y|x) in (1.4) with canonical
weight h(ξ) is defined by

fe(y|x;h) = 1

Kx(h)
exp

{
E
[
log qeξ(y|x)

∣∣ h(ξ)]}, (2.2)

where Kx(h) is the normalizing constant.
(ii) The mean weight corresponding to h(ξ) is defined by

tx(ξ;h) = E
[
log qeξ(y|x)

∣∣ fe(y|x;h)]. (2.3)



We may regard log q(x|x) as a Bayesian version of the log-likelihood and will
call it the Bayesian log-likelihood. The optimal predictor balances the Bayesian
log-likelihood ratio and the e-divergence loss.

Theorem 2.1. The predictor (2.2) is the solution to the minimization problem
(2.1), and satisfies

E

[
log

fe(x|x;h)
qeξ(x|x)

−D
(
fe(y|x;h), qeξ(y|x)

) ∣∣∣∣ h(ξ)] = 0 for any x ∈ X . (2.4)

The log-likelihood ratio is desired to be large according to the maximum likelihood
principle while the e-divergence loss should be minimized. Therefore we will call
(2.4) a saddlepoint equality.

The minimization of the Bayesian risk under the e-divergence loss is shown
to be equivalent to the maximization of the Shannon entropy in the sense that
they have the identical solution. Let H[p] be the Shannon entropy of the density
p.

Theorem 2.2. The following maximization problem of the Shannon entropy
with a constraint has the solution fe(y|x;h) identical to that of (2.1) if and only
if s(ξ) = tx(ξ;h) in (2.3).

max
q(y|x)

H
[
q(y|x)

]
,

subject to E
[
log qeξ(y|x)

∣∣ q(y|x)] = s(ξ) for any ξ ∈ Ξ.

If we ‘maximizes’ the Bayesian log-likelihood, another saddlepoint equality is
derived. A functional F (h) of h is said to have an extremum at h† if its Gateaux
derivative at h† with increment h− h† vanishes, where h is an arbitrary density.

Theorem 2.3. Assume that there exists a canonical weight h†x at which
log f e(x|x;h) has an extremum. The predictor f e(y|x;h†x) satisfies

log
fe(x|x;h†x)
qeξ(x|x)

−D
(
f e(y|x;h†x), qeξ(y|x)

)
= 0 for any x ∈ X and ξ ∈ Ξ.

The maximization of the Bayesian log-likelihood guarantees a minimum pre-
diction in the following sense.

Theorem 2.4. Define h∗x by h∗x(ξ) = λ(ξ|x) in (1.1), and suppose that h†x in
Theorem 2.3 maximizes the Bayesian log-likelihood log f e(x|x;h). Then, the pre-

dictors f e(y|x;h∗x) and fe(y|x;h†x) are respectively the best and the worst among
the predictors satisfying

E

[
log

f e(x|x;h)
qeξ(x|x)

−D
(
fe(y|x;h), qeξ(y|x)

) ∣∣∣∣ λ(ξ|x)m(x)

]
= 0, (2.5)

where m(x) is the grand marginal density in (1.1).

The condition (2.5) establishes such a class of predictors that the optimal predic-

tor fe(y|x;h∗x) is its best member and f e(y|x;h†x) is its worst one. Any predictor



in this class has a risk equal to or better than that of f e(y|x;h†x). Yanagimoto
& Ohnishi (2011) examined the condition (2.5), and discussed its implication to
the information criterion.

We give such a robust predictor that has a constant posterior risk regard-
less of the choice of the prior averaging density λ(ξ). It follows from Theorem
2.1 that − logKx(h) is the minimum of the minimization problem (2.1). The
‘maximization’ of − logKx(h) with respect to h leads to this predictor.

Theorem 2.5. Assume that there exists a canonical weight hcx at which
logKx(h) has an extremum. Then, fe(y|x;hcx) satisfies

D
(
f e(y|x;hcx), qeξ(y|x)

)
= − logKx(h

c
x) for any ξ ∈ Ξ.

3. Results in the m-divergence loss case
This section, together with §2, reveals a notable duality between the maxi-

mization of the log-likelihood and that of the Shannon entropy. Theorems 3.1 –
3.5 below correspond to Theorems 2.1 – 2.5, respectively. Equalities balancing
the Shannon entropy difference and the m-divergence loss play a key role.

We investigate the minimization problem

min
q(y|x)

E
[
D
(
qmξ (y|x), q(y|x)

) ∣∣∣ h(ξ)], (3.1)

which include (1.7) as a special case. The density h(ξ) is called the canonical
weight as in §2.

Definition 3.1. (i) The m-mixture density of qmξ (y|x) in (1.5) with canonical
weight h(ξ) is defined by

fm(y|x;h) = E
[
qmξ (y|x)

∣∣ h(ξ)]. (3.2)

(ii) The entropy weight corresponding to h(ξ) is defined by

tx(ξ;h) = − log fm(x|x;h)−D
(
qmξ (y|x), fm(y|x;h)

)
. (3.3)

The optimal predictor satisfies an interesting equality balancing the Shannon
entropy difference and the m-divergence loss.

Theorem 3.1. The predictor (3.2) is the solution to the minimization problem
(3.1), and satisfies

E
[
H
[
fm(y|x;h)

]
−H

[
qmξ (y|x)

]
−D

(
qmξ (y|x), fm(y|x;h)

) ∣∣∣ h(ξ)] = 0.

The Shannon entropy difference is desired to be large according to the Shannon
entropy maximization principle while the m-divergence loss should be minimized.
Thus, this is also called a saddlepoint equality.

The minimization of the Bayesian risk under the m-divergence loss is proved
to equivalent to the maximization of the log-likelihood in the sense that they have
the identical solution.

Theorem 3.2. The following maximization problem of the Bayesian log-
likelihood with a constraint has the solution fm(y|x;h) identical to that of (3.1)



if and only if s(ξ) = tx(ξ;h) in (3.3).

max
q(y|x)

log q(x|x),

subject to − log q(x|x)−D
(
qmξ (y|x), q(y|x)

)
= s(ξ) for any ξ ∈ Ξ.

Such a predictor that ‘maximizes’ the Shannon entropy satisfies another sad-
dlepoint equality.

Theorem 3.3. Assume that there exists a canonical weight h†x at which
H
[
fm(y|x;h)

]
has an extremum. Then, the predictor fm(y|x;h†x) satisfies

H
[
fm(y|x;h†x)

]
−H

[
qmξ (y|x)

]
−D

(
qmξ (y|x), fm(y|x;h†x)

)
= 0

for any x ∈ X and ξ ∈ Ξ.

Maximizing the Shannon entropy guarantees the minimum prediction in the
following sense.

Theorem 3.4. Define h∗x by h∗x(ξ) = λ(ξ|x) as in Theorem 2.4, and suppose that

h†x maximizes H
[
fm(y|x;h)

]
. Then, the predictors fm(y|x;h∗x) and fm(y|x;h†x)

are respectively the best and the worst among the predictors satisfying

E
[
H
[
fm(y|x;h)

]
−H

[
qmξ (y|x)

]
−D

(
qmξ (y|x), fm(y|x;h)

) ∣∣∣ λ(ξ|x)m(x)
]
= 0.

(3.4)

We learn that the condition (3.4) specifies a class of predictors whose Bayesian

risks are equal to or smaller than that of fm(y|x;h†x). Note that the optimal
predictor fm(y|x;h∗x) is a member of this class.

The scheme in Theorem 2.5 derives a predictor that has a constant posterior
risk also in the m-divergence loss case. Let −ψx(h) be the minimum of the
minimization problem (3.1). It follows from Theorem 3.1 that ψx(h) is given by

ψx(h) = E
[
H
[
qmξ (y|x)

] ∣∣∣ h(ξ)]−H
[
fm(y|x;h)

]
.

The ‘maximization’ of −ψx(h) yields such a robust predictor.

Theorem 3.5. Assume that there exists a canonical weight hcx at which ψx(h)
has an extremum. The predictor fm(y|x;hcx) satisfies

D
(
qmξ (y|x), fm(y|x;hcx)

)
= −ψx(h

c
x) for any ξ ∈ Ξ.
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