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Abstract

When part of the regressors can act on both the response and some of the other ex-
planatory variables, the already challenging problem of selecting variables in a p > n
context becomes more difficult. A recent methodology for variable selection in this con-
text links the concept of q-values from multiple testing to the weighted Lasso. In this
talk, we show that different informative measures of significance to q-values, such as
partial correlation coefficients or Benjamini-Hochberg adjusted p-values, give similarly
promising performance as when using q-values.
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1. Introduction

A common issue in modeling biological and social phenomena is variable selection,
where data in such fields often involve more predictor variables than samples. A new
difficulty to this already challenging task is selecting predictor variables in a structured
way so that an existing hierarchy among the model variables is obeyed. In some in-
stances, for example, some predictors are known to act on both the response and other
candidate predictors; thus, one must select which candidate variables affect the response
after accounting for those predictors known to affect the response. Recently, Garcia et
al. (2013) proposed a novel method for handling such structured variable selection prob-
lems; their method involves extracting q-values in multiple hypothesis testing (Storey,
2003) and using them as weights in the weighted Lasso (Zou, 2006) to appropriately
direct the selection procedure. In this paper, we take a closer look at their proposed
method and through various simulation studies, we determine if weights other than the
q-values could improve the procedure.
Performing structured variable selection is a challenge and extends beyond what earlier
selection procedures can handle. Earlier methods include the Lasso (Tibshirani, 1996)
and its extensions (Yuan and Lin, 2006; Zou 2006; Meinshausen and Bühlmann, 2010)
least angle regression (Efron et al, 2004); and selection via controlling false discovery
rates (Benjamini and Hochberg, 1995; Storey, 2003). To remedy this gap in the lit-
erature, the method of Garcia et al. (2013) was developed. The method modifies the
weights in the weighted Lasso in such a way that certain variables are ensured to be in
the final model, and that important candidate variables are selected over less important
ones. The method provides a proper multivariate analysis by collectively considering
all relevant information in the model variables, and ultimately results in selections with
acceptable false positive rates and low false discovery rates. This contrasts from indi-
vidually assessing which predictors are related to the response through simple measures
of correlations or partial correlations.
Our aim in this paper is to further explore the weight selection to perhaps further improve
the method of Garcia et al. (2013). The rest of the paper is organized as follows. Section



2 provides a brief overview of the modified weighted Lasso proposed by Garcia et al.
(2013). We discuss additional weights that could be considered. Section 3 describes
various simulation studies to assess the use of different weights. Section 4 concludes
the paper.

2. Main Results

Let the sample size be n, y = (y1, . . . ,yn)
T be the response variable, v j, j = 1, . . . ,m

denote the n× 1 covariates that we suppose are linearly related to y. The covariates
are divided into two groups: those that need to be included in the model (i.e., fixed
covariates), and those that are subject to selection. Let m0 denote the number of fixed
covariates, which are denoted as v1 := z1, . . . ,vm0 := zm0 . Let m1 denote the number
of covariates subject to selection, which are denoted as vm0+1 := x1, . . . ,vm0+m1 := xm1 .
We have that m = m0 +m1. Without loss of generality, we assume all variables are
standardized to have mean zero and sample variance one, so that the intercept is excluded
from the regression model. We also suppose that m0+1≤ n, but we allow for m0+m1 =
m > n. For ease in presentation, we refer collectively to all covariates as v’s, whereas
we may refer to the fixed covariates as z’s and covariates subject to selection as x’s.
For the m > n variable selection problem, a commonly used method is the weighted
Lasso (Zou, 2006) which minimizes
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with respect to β = (β1, . . . ,βm)
T . Here, λ > 0 is a regularization parameter, wk > 0,

k = 1, . . . ,m, are weights, and ‖ · ‖ denotes the L2-norm. We denote the minimizer as β̂ ,
which will be a function of λ and the weights w = (w1, . . . ,wm)

T .
To gain insight into the minimizer β̂ , let r(−k) = y−∑ j 6=k v jβ j, k = 1, . . . ,m, denote the
partial residual after removing the kth covariate. Through a careful derivation involving
subgradients (see Garcia and Ml̈ler (2013) for a full derivation), we have that if∣∣vT

k r(−k)
∣∣≤ λwk, (1)

then β̂k = 0; otherwise,

β̂k = sign(vT
k r(−k))(|vT

k r(−k)|−λwk)/vT
k vk,

for k = 1, . . . ,m.
From (1), it is apparent that for a fixed λ , variables vk with large weights wk will gen-
erally not be included in the model (i.e., β̂k = 0); whereas, those variables with small
weights wk will generally be included in the model (i.e., β̂k 6= 0). Using this key prop-
erty, Garcia et al. (2013) extended the work of Charbonnier et al. (2010) and Bergersen
et al. (2011) by formulating a method so that important variables were included in the
model before less important ones.
First, choosing the weights so that max(w1, . . . ,wm0)/min(wm0+1, . . . ,wm0+m1) is arbi-
trarily close to zero will ensure that the z’s are selected before the x’s. For example,
setting w1 = . . . = wm0 = 0 guarantees that the z’s are always selected. In our simula-
tions we will set w j = 10−5 on z j, j = 1, . . . ,m0, to explore to what extent such small
weight values lead to the exclusion of the z’s.
Second, the x’s are weighted according to some measure of significance of their rela-
tionship to y after accounting for the z’s. For example, this measure of significance
can be based on the partial correlation between x and y after accounting for z’s; i.e.,



ρxk,y|z1,...,zm0
. In this case, we could weigh each xk with wm0+k = 1/|ρxk,y|z1,...,zm0

|, so that
x’s most correlated with y are included first in the model selection before those x’s least
correlated with y.
Similarly, we could also use results from m1 separate linear regressions: for k = 1, ...,m1,
run a linear regression of y on (z1, ...,zm0 ,xk), and compute the p-value pk for the effect
of xk in this regression. Assuming m0 + 1 ≤ n, these regressions are valid. Then, a
measure of the significance of x’s could be the computed p-values or adjusted p-values
to account for the multiplicity of tests. For example, we could adjust the p-values us-
ing Benjamini-Hochberg methods (Benjamini and Hochberg, 1995) or using q-values
(Storey and Tibshirani, 2003). The p-values, or their adjusted versions, can then be
used as weights in the weighted Lasso. Statistically significant x’s tend to have small
(adjusted) p-values and non-significant x’s have large (adjusted) p-values. Thus, weigh-
ing each xk with its corresponding (adjusted) p-value will generally lead to including
statistically significant x’s in the final model.
The proposed method of Garcia et al. (2013) focused on q-values as weights for the x’s.
In this paper, we also consider other weights; specifically,

1. wm0+k = 1/|ρxk,y|z1,...,zm0
| on xk, k = 1, . . . ,m1, where ρxk,y|z1,...,zm0

is the partial
correlation between xk and y after controlling for z1, . . . ,zm0 ;

2. wm0+k = 1/|tk| on xk, k = 1, . . . ,m1, where tk = β̂ ∗k /se(β̂ ∗k ) is the t-statistic ob-
tained from the individual linear regressions and β̂

∗
k is the estimated coefficient

associated with xk in the individual linear regressions;

3. wm0+k = pk on xk, k = 1, . . . ,m1, where pk are the p-values obtained from the
individual linear regressions;

4. wm0+k = pBH
k on xk, k = 1, . . . ,m1, where pBH

k are the Benjamini-Hochberg (Ben-
jamini and Hochberg, 1995) adjusted p-values obtained from the individual linear
regressions;

5. wm0+k = qk on xk, k = 1, . . . ,m1, where qk are the q-values obtained from the
individual linear regressions.

In Section 3, we explore the influence these different weights have on the weighted
Lasso.
In practice, the weighted Lasso is solved using a least angle regression (LARS) algo-
rithm (Efron et al, 2004) which provides the entire sequence of model fits in the Lasso
path, along with estimated parameter coefficients. The best descriptive model among all
those in the Lasso path is the one that minimizes the penalized loss function

Mn(δ , p) = SSEp∗/σ̂
2−n+δ p∗. (2)

Here, δ > 0, p∗ is the number of predictors in the selected model, SSEp∗ is the residual
sum of squares for the selected model, and σ̂2 is an appropriate estimator of the model
error variance. For example, when n > p∗, σ̂2 can be the residual mean square when
using all available variables, and when n < p∗, σ̂2 can be the variance of the response
vector y (Hirose et al, 2011).
An important detail of (2) is the choice δ as different δ values yield different model fits
and observed FDR. Garcia et al. (2013) proposed a modified cross-validation procedure
to appropriately select δ ; in this paper, however, we consider δ fixed at δ = 1, and focus
on the choice of weights.



3. Simulation

We evaluated the performance of the different weighting schemes on simulated data
similar to the simulation study in Garcia et al. (2013) that mimics the real microbiata
data in Garcia et al. (2013) and Garcia and Müller (2013), where a diet variable is known
to act on both, the response (weight related phenotype) and possibly on some of the other
regressors (microbes). We supposed there were two diet groups with 20 subjects in each,
and generated m1 +1 explanatory variables as follows. First, we generated a binary diet
indicator z where for each subject i = 1, . . . ,40, zi = I(i > 20)− I(i ≤ 20). Then we
generated xk = (x1,k, . . . ,x40,k)

T
, k = 1, . . . ,m1, such that xik = uik + zisk, where uik were

independent uniform (0,1) random variables, s1, . . . ,s0.75m1 were independent uniform
(0.25,0.5) and s0.75m1+1, . . .sm1 were identically zero. Thus, we created m1 variables,
x1, . . . ,xm1 where the first 75% of the x’s depend on z. Finally, we generated the response
vector as

y = β1z+β2x1 +β3x2 +β4x3 +
m1

∑
k=5

βkxk +βm1+1xm1 + ε, (3)

where ε is normally distributed with mean 0 and covariance σ2I. In summary, x1, . . . ,xm1

were generated according to four distinct categories:

Group 1. x1,x2,x3 depend on diet and act on y even after taking into account diet;

Group 2. x4, . . . ,x0.75m1 depend on diet and do not act on y;

Group 3. x0.75m1+1, . . . ,xm1−1 neither depend on diet, nor act on y;

Group 4. xm1 does not depend on diet, but acts on y.

To evaluate the performance of the different weights in the weighted Lasso, we consid-
ered two different parameter settings. We set m1 = 40, σ2 = 0.5 with

β = (4.5,3,−3,−3,0
T
,3)

T
and β = (2.5,1.5,−1.5,−1.5,0

T
,1.5)

T

where 0
T

is an (m1−4)-dimensional vector of zeros. Under each parameter setting, we
generated 1000 independent data sets, and applied the weighted Lasso with the proposed
weights in Section 2. We report the averaged percentages of time variables in each group
were selected, the observed false discovery rate (FDR), and the average weight placed
on variables in each group. We refer to Garcia and Müller (2013) for more simulation
results, including investigating effect
From Table 1, we observe that the weighted Lasso has a high rate of true positives and an
acceptable false positive rate. Most interestingly, we observed that weights based on the
inverted absolute partial correlations and inverted absolute t-statistics equally selected
the same percentage of variables in each group. Likewise, weights based on any of the p-
values (either with or without adjustment) led to similar results in the variable selection.
In fact, both the BH-adjusted p-values and q-values led to exactly the same percentages
of selection for each group. This performance is not surprising given that, for each
group, the average BH-adjusted p-value was nearly the same as the average q-value
(see last two columns of Table 2). Interestingly, weights based on p-values without
any adjustment led to the most reasonable results with variables in Groups 1 and 4
selected most frequently, and variables in Groups 2 and 3 least frequently. This suggests
that when using the weighted Lasso for variable selection, no transformation of the p-
value based weights is necessary. This contrasts from using adjusted p-values to select
significant variables where transformation is needed to account for the compounded
error in multiple hypothesis testing.



Average Variable Selection
Weights |ρx,y|z|−1 |t|−1 p pBH q

β = (4.5,3,−3,−3,0
T
,3)

T

Diet 100.00 100.00 100.00 100.00 100.00
Group 1 75.53 75.10 73.00 73.03 73.03
Group 2 0.39 0.36 0.27 0.29 0.29
Group 3 1.88 1.60 0.44 0.50 0.50
Group 4 85.70 84.80 75.70 77.80 77.80

FDR 0.08 0.07 0.04 0.04 0.04

β = (2.5,1.5,−1.5,−1.5,0
T
,1.5)

T

Diet 100.00 100.00 100.00 100.00 100.00
Group 1 40.57 41.33 46.80 43.53 43.53
Group 2 0.51 0.50 0.57 0.47 0.47
Group 3 2.19 1.96 0.78 0.97 0.97
Group 4 60.20 59.40 52.00 51.50 51.50

FDR 0.16 0.14 0.10 0.10 0.10

Table 1: Simulation results from 1000 simulations. Averaged percentages of time
variables in each group were selected and observed false discovery rate (FDR). Ideal
weighted Lasso will largely select variables in Groups 1 and 4, and not select variables
in Groups 2 and 3.

Average Weights
Weights |ρx,y|z|−1 |t|−1 p pBH q

β = (4.5,3,−3,−3,0
T
,3)

T

Group 1 0.38 2.55 0.03 0.14 0.11
Group 2 7.22 43.97 0.50 0.78 0.63
Group 3 8.11 49.39 0.50 0.78 0.64
Group 4 0.37 2.51 0.03 0.15 0.12

β = (2.5,1.5,−1.5,−1.5,0
T
,1.5)

T

Group 1 0.75 4.75 0.07 0.28 0.23
Group 2 24.01 146.11 0.50 0.79 0.65
Group 3 11.55 70.32 0.50 0.79 0.65
Group 4 0.53 3.44 0.07 0.29 0.24

Table 2: Simulation results from 1000 simulations. Average weights in each group.
Ideally the weights are small in Groups 1 and 4 and (relatively) large in Groups 2 and 3.

4. Conclusion

We conclude that in the p > n context, when part of the regressors can act on both the
response and some of the other explanatory variables, using structural information to
construct feature weights in the weighted Lasso greatly aids the variable selection. We



have shown that the results from Garcia et al. (2013) extend from using q-values to any
other informative measure of significance, such as p-values and adjusted p-values, or
partial correlation coefficients and test statistic values.
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