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Abstract

The concept of degrees of freedom plays an important role in statistical model-
ing and is commonly used for measuring model complexity. The nominal de-
grees of freedom, i.e., the number of unknown parameters, may fail to work in
some modeling procedures, in particular linear mixed effects model situations.
In this article, we proposed a new definition for generalized degrees of freedom
in the context of linear mixed effects models. It is derived based on the sum of
the sensitivity of the expected fitted values with respect to their underlying true
means and can be simplified to a sum of covariance terms. Furthermore, we
explore and compare two estimation methods, data perturbation and residual
bootstrap to approximate the proposed generalized degrees of freedom. We also
show that this generalized degrees of freedom satisfies some desirable proper-
ties and can be used for linear mixed effects model selection.

Keywords: Deviance, Information Criterion, Resampling, Bootstrap

1. Introduction

The concept of degrees of freedom (df) plays an important role in statistical
modeling. The nominal degrees of freedom, i.e., the number of unknown pa-
rameters, is commonly used in linear regression model for measuring model
complexity, particulary when using maximum likelihood or least square esti-
mators for the regression parameters. However, many linear model estimates
are not based on these methods. As a consequence the nominal degree of free-
dom may fail to work. In pioneering work, Ye (1998) proposed a new definition
to measure the complexity of a linear model, the generalized degrees of free-
dom, which is based on the sum of the sensitivity of the expected fitted values
to the corresponding expected values of the observations. Ye’s generalized df
has been widely accepted in linear models. Examples include Lian (2003), Zou
et al. (2007) and Vaiter et al. (2012). The linear mixed effects model is an increas-
ing commonly used statistical model and is much more complicated than the
simple linear regression model. To our knowledge, very little work on the df in
linear mixed effects models has been done. A notable exception is Zhang et al.
(2012), who derived a generalized df based on the expected Kullback-Leibler
loss and who additionally proposed an adaptive model selection procedure for
linear mixed effects models. The generalized df in Zhang et al. (2012) is defined
as,
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m
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∑
j=1

ni
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where ĝi j(Y) is a function of Y which gives the fitted value of Yi j and V̂i jk is the
( j,k)th entry of the inverse of Σ̂i.



In this paper, we extend Ye’s idea and propose a new definition of generalized
df in the linear mixed effects model context. Furthermore, we approximate our
generalized df through a residual bootstrap. We show that our proposed gen-
eralized df satisfies some desirable properties and that it can be used for the
selection of linear mixed effects models.
In the following we focus on a special case of the linear mixed effects model, the
cluster model, which can be expressed as

Yi = Xiβ +Zibi + ε i, i = 1,2, . . . ,m, (2)

where Xi ∈mat(ni, p) and Zi ∈mat(ni,q) are the design matrices for the fixed part
and the random part respectively, m is the number of clusters, β is a vector of
fixed effects, bi is a vector of random effects such that bi ∼ N (0,D) for all i.
The within-group error terms ε i is independent to the random effects bi. If not
otherwise indicated, we assume that the components of ε i are independent and
ε i ∼ N (0,σ2Ini), where ni is the size of the ith cluster. Thus we consider the
independent cluster model (Müller et al., 2013). Hence, model (2) simplifies to
Yi ∼N

(
µ i,Σi

)
, where µ i = Xiβ and Σi = σ2Ini +ZiDZ′i.

The rest of this paper is organized as follows. Section 2 presents a new definition
of generalized df and two ways to estimate it. In Section 3, we describe how the
proposed generalized df can be used for linear mixed effect model selection. A
simulation study of linear mixed effects model selection is conducted in Section
4. We conclude in Section 5.

2. Generalized Degree of Freedom and its Estimating Methods

2.1. Definition
Motivated from Ye (1998) and Zhang et al. (2012) we propose a new definition
of generalized df for the linear mixed effects model in Equation (2). It measures
the model complexity according to the sensitivity of the estimated value of Yi j
with respect to the corresponding underlying true means. That is,
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where Vi jk is the ( j,k)th entry of the inverse of Σi, hence Vi is symmetric, Vi jk =
Vik j.

2.2. Properties of gd fs

To be a reasonable and consistent measure of model complexity, we suggest
that any definition of df should satisfy the following properties: (1) df is non-
negative, (2) if model M1 is nested in model M2, then df of M2 should be larger
than df of M1, (3) df equals the nominal df namely the number of unknown
parameters if least square estimates are used in linear regression. In You et al.
(2013) we provide empirical evidence that our proposed generalized df is non-
negative. The rationale is that with the increasing underlying mean of Yi j, rea-
sonable estimates ĝi j should increase as well, and so the derivative in Equation



(3) should be positive. In You et al. (2013) we prove the following lemma that
shows that gd fs coincides with the nominal df if the least square estimate is used
in a linear regression model.

Lemma 1: If the fitted values of the response is ĝ = HY, where H is the hat matrix,
then gd fs = tr(H). Especially, when the least square estimates are used, gd fs = tr(H) =
tr(X(XT X)−1XT ) = p, the number of unknown parameters.

2.3. Estimation
From Equation (4) we can see that both Vi jk and the covariance term in gd fs

are unknown. According to the consistency property of the REML estimates
Jiang (1996, 1998), we suggest to use the REML estimate of the covariance matrix
from the full model to replace Vi jk in Equation 4. The term Cov(ĝi j(Y),Yik) can
be approximated from the sample covariance which requests to resample Y.
The residual bootstrap is a straightforward method to resample Y and there are
multiple ways to implement it. We will use the full model REML estimates to
resample Y. Hence the pseudodata are generated through Y∗ = µ̂BLUE,full + r,r ∼
N (0, Σ̂REML,full). You et al. (2013) show that this residual bootstrap method works
much better than using the data perturbation approach suggested in Zhang et al.
(2012).

3. Model Selection

In practice, model selection is a key aspect in statistical analysis. The literature
on selection of linear mixed effects models has grown rapidly in the last decade
and we refer to Müller et al. (2013) for a review. However there is not yet con-
sensus in the statistical community on what model selection method to use. In
this section, we introduce a new model selection approach using our proposed
generalized df for linear mixed effects models.
Consider a model selection criteria

− log p(y|θ̂M )+κ∆(M ), κ ∈ (0,∞),

where κ is a penalty multiplier and ∆(M ) is a model complexity term. We sug-
gest to use gd fs to measure the model complexity. To pick the best model for a
fixed κ , the criteria of all the potential models should be calculated and the one
with smallest value is considered as the best model. However, in practice it is
impossible to go through all models, especially when the model size is large as
the estimation of the proposed generalized df is quite time consuming. Moti-
vated by Zhang et al. (2012) we propose a model selection procedure as follows:
First, select the best model M̂λ from all candidate models to minimize the fol-
lowing criteria for each possible λ ,

− log p(y|θ̂M )+λ |M |,λ ∈ (0,∞),

where |M | is the number of independent parameters in model M . Next, the
optimal λ is selected by

λ̂ = argmin
λ

− log p(y|θ̂M̂λ
)+κ× ĝd f (M̂λ ), (5)



and hence the optimal model is M̂
λ̂

. Although the ideas behind are different,
the proposed selection procedure for κ = 1 fixed is very similar to the one in
Zhang et al. (2012).
In Section 4, we compare our method to the adaptive model selection approach
in Zhang et al. (2012) when κ = 1 in both methods.

4. Simulation

In this section we provide numerical illustrations on the performance of the
proposed method to select models and compare it to both Zhang et al. (2012)’s
adaptive model selection approach and the AIC with nominal df. Consider the
following linear mixed effects model

Yi j = α +
4

∑
k=1

xi jkβk +
4

∑
l=1

zi jlbil + εi j, i = 1, . . . ,ni, j = 1, . . . ,m, (6)

where ni = 10, m = 50, εi j ∼ N (0,σ2) is the error term, α = 1 is the intercept,
bi = (bi1, ...,bi4) ∼N (0,D) is the random effect, D is the covariance matrix with
the ( j,k)th element equal to ρ | j−k|. The elements of the design matrices X and
Z are generated from the standard normal distribution, the response variable Y
is generated via Equation (6) with σ2 = 1, ρ = 0.5, βk = 0,1 and bil included or
excluded from the model. Five different settings are considered for both β and
b. Let c= 0,1,2,3,4 and d = 0,1,2 denote the number of fixed and random effects
in the data generating model respectively, i.e., c = 2 means the first 2 values of
(β1, ...,β4) are selected to be 1 and 0 otherwise, d = 2 means only b1 and b1 are in
the model. Note, we use the lmer function in R to calculate the fitted value ĝ in
this simulation.
There are 15 data generating models with all the combination of c and d. Sim-
ulations are repeated 100 times for each setting. The average sums of the false
positives and false negatives of the above selection procedures are shown in Fig-
ure 1. The proposed procedure using gd fs performs well in general. Zhang et al.
(2012)’s approach fails to work when the generating model are linear models but
has a very similar performance to AIC when the random effects are involved in
the generating model. All three methods work better when the model is larger.
The generating models here are fairly simple, results for more complex models
are shown in You et al. (2013).

5. Conclusion

This article extends Ye (1998)’s idea and develops a new concept of generalized
df in linear mixed effects model. We have numerically shown that the proposed
gd fs satisfies desirable properties, for example, always positive and monotonic
increasing in the nested models. Furthermore, the generalized df and the esti-
mation method in Zhang et al. (2012) are compared to what we proposed. As
seen from the simulation results, our residual bootstrap method may perform
better than the data perturbation method proposed in Zhang et al. (2012) and
the ability of selecting models for our generalized df is slightly better than the
generalized df in Zhang et al. (2012). Our results also give some motivation for



● ●
●

●
●

0 1 2 3 4

0
1

2
3

4
5

6

No. of Random effects d = 0

No. of Fixed effects c

Fa
ls

eP
os

iti
ve

+
Fa

ls
oN

eg
at

iv
e

● GDFs
GDFzhang
AIC

●

●

● ●

●

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

No. of Random effects d = 1

No. of Fixed effects c

Fa
ls

eP
os

iti
ve

+
Fa

ls
oN

eg
at

iv
e

●

●

●

●

●

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

No. of Random effects d = 2

No. of Fixed effects c

Fa
ls

eP
os

iti
ve

+
Fa

ls
oN

eg
at

iv
e

Figure 1: Model selection using gd fzhang, gd fs and AIC

justification of gd fs defined in Equation (3) for other models, such as generalized
linear mixed models.
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