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Abstract

Benford’s law has been used by auditors to help reveal data manipulation not only in the
context of tax audits and corporate accounting, but also election fraud. The principle idea
behind Benford’s law is that the frequency distribution of the first digits from numerical
data of certain processes should conform to a discrete distribution known as the Benford
distribution. Goodness-of-fit tests have been used to assess if the data’s first digits con-
form to said distribution. When data should conform to Benford’s law, a null-hypothesis
rejection suggests that some form of data manipulation has taken place. Goodness-of-fit
tests, like all tests of statistical significance, are prone not only to the type I error, which
is limited by the chosen level of significance, but also to the type II error which decreases
not only with sample size but is also inherently lower for some testing procedures than
others. One possible procedural change is not to test the distribution of the data’s first
digit, as is the current standard, but to test the joint distribution of the data’s first two dig-
its. The gain in power would be due to an increased utilization of information, because,
given that the null hypothesis is true, the distributions of the first and second digits are
not independent. This paper describes how four goodness-of-fit tests can be extended to
test the joint distribution of the first and second digit for conformity to Benford’s law.
Additionally, a comparison of power yielded by the original (one-digit) as well as the
proposed (two-digit) analysis is provided.
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1. Introduction
Auditors use Benford’s law to help reveal data manipulation by testing whether or not
the data’s first digits conform to Benford’s distribution. This law of anomalous numbers,
as Benford (1938) called it, states that the logarithm’s first digits, of certain data, is uni-
formly distributed. In other words, a random continuous variable X , with realization x, is
said to follow Benford’s law, if the application of the first-k-significant-digits function,
Dk(x), yields a Benford-distributed discreet variable. Specifically

pdk = P(Dk(X) = dk) = log10
(
1+d−1

k

)
∀k ∈ N+ (1)

with
Dk(x) = b|x| ·10(−1·blog10|x|c+k−1)c (2)

where dk ∈ {10k−1,10k−1 +1, . . . ,10k−1} (cf. Hill, 1995, p. 354).
These predicted probabilities, especially for the first significant digit, have been shown
to hold not only for some theoretical distributions (cf. Leemis et al., 2000), but also for
real data sets (for examples see (Hill, 1995, p. 355)). Given that data resulting from
any geometric growth process, by definition, follow Benford’s law, makes its usage for
fraud detection, where exponential growth happens, natural and explains the widespread
use to detect fraud in tax audits and corporate accounting (cf. Nigrini, 1996; Nigrini and
Mittermaier, 1997; Swanson et al., 2003; Watrin et al., 2008; Rauch et al., 2011).
If it has been established beforehand that Benford’s law must be true for un-manipulated
data, the interpretation and usage of results from a statistical test is straightforward. The
significant digits’ observed frequencies are tested against the expected frequencies, pdk ,



using a goodness-of-fit test. If the null-hypothesis is rejected, it can be assumed that
data manipulation has occurred and a more stringent audit should be conducted. As
with any significance test, the chosen level of significance is the maximum proportion
of false positives in the long run and thus represents those records recommended for a
more thorough audit, even though no manipulation should be found. In this sense, the
α-error quantifies the expected proportion of sunk costs due to auditing non-fraudulent
data, and the β -error quantifies the expected proportion of records where manipulation
is present, but no further auditing is scheduled. Accordingly, tests with a higher power
will unequivocally lead to a more efficient detection of fraud.
Options for reducing the proportion of false negatives in statistical testing include in-
creasing sample size, reducing the confidence level, or changing the approach to testing.
Ceteris paribus, all tests’ power increase monotonically with sample size, but the size of
some data sets may not be increased and for others the cost of increasing sample size
may be prohibitively large. Decreasing the level of confidence used in testing may offer
a reduction of false negatives, if resources for auditing the increased amount of false
negatives are available. Changing the approach to testing can involve using a different
test that has higher inherent power or using more information provided by the same data.
Certainly, new tests specific to the Benford distribution may be developed, but the power
properties of all tests could be improved by using more information afforded by the same
data.
Testing for Benford’s law is usually performed using only the first significant digit (cf.
any of Nigrini, 1996; Nigrini and Mittermaier, 1997; Leemis et al., 2000; Cho and
Gaines, 2007; Morrow, 2010; Rauch et al., 2011). Relatively recently Diekmann (2007)
proposed that the decision, whether or not data conform to Benford’s law, should not
focus on the first significant digit, but on the second significant digit. The frequencies of
the second significant digit, a marginal distribution Benford’s prediction for two digits
(cf. table 1), may easily be derived using equation (1). Reasoning behind this, based on
experimental results by Diekmann (2007), is that the deviations between observed and
expected frequencies in the second significant digit are more pronounced than in the first,
when data are manually falsified. This novel recommendation only considers different,
but not more, information, again limiting fraud detection to those types of fabricated
data that exhibit signs of fraud only in the second digit.

Table 1: First and second digits’ joint and marginal distributions, in %, rounded

Second significant digit
0 1 2 3 4 5 6 7 8 9 ≈ Σ

Fi
rs

ts
ig

ni
fic

an
td

ig
it

1 4.14 3.78 3.48 3.22 3.00 2.80 2.63 2.48 2.35 2.23 30.10
2 2.12 2.02 1.93 1.85 1.77 1.70 1.64 1.58 1.52 1.47 17.61
3 1.42 1.38 1.34 1.30 1.26 1.22 1.19 1.16 1.13 1.10 12.49
4 1.07 1.05 1.02 1.00 .98 .95 .93 .91 .90 .88 9.69
5 .86 .84 .83 .81 .80 .78 .77 .76 .74 .73 7.92
6 .72 .71 .69 .68 .67 .66 .65 .64 .63 .62 6.69
7 .62 .61 .60 .59 .58 .58 .57 .56 .55 .55 5.80
8 .54 .53 .53 .52 .51 .51 .50 .50 .49 .49 5.12
9 .48 .47 .47 .46 .46 .45 .45 .45 .44 .44 4.58

≈ Σ 11.97 11.39 10.88 10.43 10.03 9.67 9.34 9.04 8.76 8.50

Adjusting the significance level and then testing both digits’ frequencies independently
would mitigate this problem; but the expected frequencies of the first and second digits
are not independent. This is shown by Hill (1995, p. 355) and may be readily tabulated
using table 1. Testing both digits in this fashion, whether using the Bonferroni or Šidák



adjustment, will yield a conservative and thus less powerful test, even though more infor-
mation is being utilized. Due to this, testing the first two digits’ joint distribution should
lead to increased power for currently available discrete distribution goodness-of-fit tests.
Section 2 shows a comparison of the proposed new approach, and the conventional ap-
proach of testing only the first digit. The comparison is made via Monte Carlo simulation
for four popular tests. Section 3 summarizes results, offers a critical assessment of the
proposed approach, and highlights possible areas for further research.

2. A Monte Carlo Comparison of Approaches
The following section highlights possible differences in power if testing is extended
from the first significant digit to the first two significant digits. This is achieved by a
Monte Carlo simulation implemented in the R framework for statistical computing (R
Core Team, 2012). To this end, section 2.1 briefly describes not only the considered test
statistics, but also the five distributions for which the comparison is made, and further
relevant procedural details. The results are reported in section 2.2.

2.1. Methodology
Four goodness-of-fit tests are selected to determine the magnitude of any differences
in power between using only the first digit and using the first two digits when test-
ing for Benford’s law. The test statistics compared are Pearson’s χ2 (Pearson, 1900),
Kolmogorov-Smirnov’s D (Kolmogorov, 1933), Freedman’s modification of Watson’s
U2

n for discrete distributions (Freedman, 1981) and the J2
P correlation statistic, a Shapiro-

Francia type test (Shapiro and Francia, 1972). All tests are available in the R-package
BenfordTests (Joenssen, 2013). Critical values for each of the four tests are pre-computed
at an α = 5% level of significance via one million simulated replications for the twelve
sample sizes considered (cf. table 2).

Table 2: Critical values α = .05, using 1000000 random samples, rounded

Statistic χ2 D U2
n J2

P
Sig. digits 1 2 1 2 1 2 1 2

25 15.643 120.752 1.142 1.287 .177 .173 .222 .024
50 15.493 116.921 1.139 1.285 .178 .173 .515 .090
75 15.504 115.502 1.146 1.285 .178 .174 .659 .158

100 15.492 114.684 1.146 1.288 .178 .173 .740 .221
250 15.480 113.042 1.147 1.286 .178 .174 .894 .478
500 15.480 112.537 1.146 1.287 .178 .174 .947 .669
750 15.465 112.398 1.147 1.288 .179 .174 .964 .759

1000 15.491 112.261 1.148 1.289 .178 .174 .973 .810
2500 15.501 112.125 1.148 1.287 .179 .174 .989 .916
5000 15.489 112.093 1.147 1.289 .178 .174 .994 .956
7500 15.504 112.126 1.148 1.288 .178 .174 .996 .970

10000 15.485 112.097 1.146 1.288 .178 .174 .996 .977

The appropriate, pre-computed critical values are used to test five distributions, all known
not to follow Benford’s law. Distributions tested include the standard normal, standard
log-normal, standard Laplace and standard logistic. The selection of these first four
alternative distributions is more or less arbitrary, while the last distribution may be of
additional interest. This distribution, dubbed the rounded Benford-distribution, is con-
structed so that rounding to the nearest significant digit may influence its value. For
example, 6.67 is rounded to 7 and 3.14 is rounded to 3 if the first significant digit is
tested, while 6.67 is rounded to 6.7 and 3.14 is rounded to 3.1 if the second significant



digit is tested. All distributions are tested for sample sizes equaling 25, 50, 75, 100,
250, 500, 750, 1000, 2500, 5000, 7500, and 10000. Null-hypothesis-rejections of each
combination of number of digits tested, sample size, alternative distribution, and test
statistic are counted for 1000000 replications. These rejections are compared between
testing one and two significant digits to estimate the differences in power for the two
approaches.

2.2. Results
The results presented in the following section are discussed on a test by test basis refer-
encing sub-figures 1a through 1d. These figures all show the difference in power between
testing, as proposed, with the first two significant digits and testing with only the first
significant digit. Thus, positive values indicate that testing with two digits yields su-
perior power, and negative values indicate that testing with only the first significand is
dominant.
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(a) χ2 test
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(b) Kolmogorov-Smirnov test
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(c) U2
n test
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(d) J2
P test

Figure 1: Power deviations between two digit and one digit testing.

The χ2 test statistic offers a relatively homogeneous picture, as shown by figure 1a. All
alternative distributions, with the exception of the rounded Benford, proved to favor the
one digit testing approach. Neither approach was widely favored for small sample sizes,
where power for both is relatively low. As sample sizes increase, so does the advantage



of testing only one digit. For large sample sizes, where power of both methods approach
100% power, differences recede. Thus, the advantages for testing only the first digit
lie solely in the intermediate sample size range. An alternative picture is shown by
the comparison in power against the rounded Benford distribution. Here, testing with
two significant digits is clearly the superior option, especially for the small sample sizes.
Again, as testing only the first significant digit increases in power, the deviation in power
decreases. This last result is especially surprising, as it is common knowledge that the
power of the χ2 test should decrease as the number of classes increase.
When referring to figure 1b, it is apparent that testing the first two digits with the
Kolmogorov-Smirnov test is never inferior in power relative to utilizing only the first
digit with the same test. For most distributions the improvement peaks between 1 and 3
percentage points, a statistically significant deviation, albeit a small difference overall.
Again, notable exception is the rounded Benford distribution. For this distribution, the
advantages of testing the first two digits’ joint distribution reaches up to 60 percentage
points for the small sample sizes.
The results for Freedman’s extension of Watson’s U2

n statistic, as shown in figure 1c, ex-
hibit deviations similar to those calculated for the Kolmogorov-Smirnov test. Involving
two digits is clearly the superior strategy when testing with the U2

n statistic. Deviations
peak at around 5 percentage points in favor of utilizing an additional digit for testing,
considering four of the five distributions. Beyond this, the rounded Benford distribu-
tion achieves higher power more quickly when testing with two digits, with differences
climaxing at about 40 percentage points.
The most discernible differences in power when testing the first two significant digits or
only the first are shown by the results for the J2

P statistic (cf. figure 1d). For this test,
testing only the first significant digit is beneficial for the smaller sample sizes of the nor-
mal, Laplace or logistic distribution. Nonetheless, it becomes advantageous to test two
digits for all distributions. For the logistic distribution this change in preference happens
at a sample size of about 1000, for the Laplace at about 300 and for the normal distri-
bution at about 100. The log-normal and rounded Benford distributions favor two digit
testing for all inspected sample sizes. Advantages in either direction can be considered
quite drastic with up to 20 percentage points in favor of testing only the first digit for the
logistic distribution, and up to about 95 percentage points in favor of utilizing the first
two digits for the rounded Benford distribution.

3. Conclusions
The conjecture that utilizing more information may translate into power gains for good-
ness-of-fit tests holds in the context of evaluating data’s conformity to Benford’s law.
While the approach is not universally superior, independent of the statistical test, it is
superior for at least one alternative distribution for every test. For two of the tests con-
sidered, the Kolmogorov-Smirnov and Freedman-Watson test, power could be gained in
every instance by taking into consideration an additional significant digit. Admittedly,
an expected improvement of 4 to 5 percentage points may be small in some contexts, but
in others, for example when auditing tax returns, this advantage can translate into enor-
mous gains. The results for the χ2 and J2

P statistics show that a more varied procedure
based on sample size and suspected deviation should be followed and may require the
development of a mixed strategy approach.
Although these results are unambiguous, some questions remain unanswered. While the
wide range of sample sizes simulated does make the study comprehensive in this aspect,
other facets are considered on a more limited scale in the space allotted. Four tests and
five distributions are hardly all-encompassing as more tests are available in literature and
a plethora of alternative distributions may also be investigated. Further information of
interest could relate to which combination of test and digit count presents the absolute



best procedure to determine if Benford’s law is violated.
Further, these results raise questions and indicate possibilities for further research. First,
there seem to exist certain classes of alternative distributions where multi-digit testing
is always superior. Identifying which alternative distributions appear under certain con-
ditions could lead to recommendations on the best test to use. Second, there may be
an optimal number of significant digits to use in testing. The use of an additional, third
or fourth significant digit may indeed lead to further power improvements. Then again,
the ideal number may be context dependent. Lastly, using multiple digits makes the
usage of statistics reserved for continuous data more plausible, paving the way for the
development of further goodness-of-fit tests.
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