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Abstract

For the nonparametric density estimators we show that the constant c1 in the relation bias =

c1h
q + o(hq) can be made arbitrarily small, while keeping the variance var = 1

nh (c2 + o(h)), as
measured by the constant c2, bounded, provided that the kernels are of order q. We call a free-lunch
effect the fact that c1 can be made as small as desired, without increasing the density smoothness
requirement or the kernel order. Another problem we consider is testing if a density satisfies a dif-
ferential equation. This result can be applied to see if a density belongs to a particular family of
differential equations.
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1. Introduction
Nonparametric density estimation has been a subject of many papers, see Withers and
Nadarajah [2012] for the latest references. A lot of research focused on constructing es-
timators that would reduce bias, relative to the ones suggested earlier. Two common ob-
servations are that (1) the smoother the density, the better the rate of convergence and (2)
to avail oneself of the higher smoothness of the density, one has to use kernels with spe-
cial properties, such as higher-order kernels or the ones proposed by Mynbaev and Martins
Filho [2010].

Withers and Nadarajah [2012] have explored the procedure of transforming a kernel K
into a higher-order kernel TaK via multiplication of K by a polynomial of order q:

(TaK)(t) =

(
q∑

i=0

ait
i

)
K(t)

with the appropriately chosen vector of coefficients a = (a0, ..., aq)
′ ∈ Rq+1. Using in-

complete Bell polynomials, they have found a that reduces bias in comparison to that of
some of existing estimators and for some main densities. The idea of transforming a kernel
by multiplying it by a polynomial is simple and perhaps is a part of the statistical folklore
(for example, Lejeune and Sarda [1992] obtained such a transformation from a different
concept) but Withers & Nadarajah seem to have been the first to have a closer look at it. As
they mention, this method is less calculation-intensive than several other methods.



The first purpose of this paper is to investigate the transformation Ta further. The
outcome is surprising: the vector a can be chosen in such a way as to make the bias
bias = c1h

q + o(hq), as measured by the constant c1, arbitrarily small, while keeping
the variance var = 1

nh(c2 + o(h)), as measured by the constant c2, bounded, provided
that TaK is of order q. We call a free-lunch effect the fact that c1 can be made as small as
desired, without increasing the density smoothness requirement or the kernel order. To put
it differently, there is no estimator with the least bias among those which have uniformly
bounded variances and are generated by higher-order kernels of fixed order. Note that c1
can be set to zero, but then TaK becomes of order higher than q. It is also useful to bear
in mind that in a sufficiently large class of estimators there are no unbiased estimators of
densities [Rao, 1983, Ch. 1].

The free-lunch effect raises a natural question: as c1 → 0, could it be that the higher-
order terms in h in the decompositions of the bias and variance tend to infinity? We show
that this is not the case, that is, the higher-order terms can be controlled not to increase.
We do this under two sets of assumptions. The first set is that the density is infinitely
differentiable and all moments of K exist (as do Withers & Nadarajah) and the second is
that the density has a finite number of derivatives and the kernel and its square possess a
finite number of moments. In both cases we provide complete proofs. By extending our
proofs for the first set of assumptions, one can justify some formal infinite decompositions
from Withers and Nadarajah [2012]. For the second set we give the full proof just because
there is a need to control higher-order terms, which does not seem to have been done in the
literature.

Another interesting idea suggested by Withers & Nadarajah is to use a linear combi-
nation of estimators of lower-order derivatives in order to better estimate a higher-order
derivative. Although the outcome (their Theorem 3.1) is weaker than our Theorems 2 and
3, the idea can be used for a different purpose, namely, for testing if a density is of a certain
type. Consider, for example, the standard normal density f(t) = (2π)−1/2 exp(−t2/2). It
satisfies a differential equation f ′(t) + tf(t) = 0. The general solution of this equation is
f(t) = c exp(−t2/2), and if it is to be a density, one has to put c = (2π)−1/2. We say
that a density f is locally standard normal at point t if it satisfies the above differential
equation at that point. Thus, there is a practical need to test whether a density satisfies a
certain differential equation. The second purpose of this paper is to address this need. The
testing procedure is accompanied by an asymptotic normality statement. The latest refer-
ences concerning normality testing include Razali and Wah [2011], Thadewald and Büning
[2007], Sürücü [2008], Farrell and Rogers-Stewart [2006] and Szekely and Rizzo [2005].
According to Razali and Wah [2011], the Shapiro-Wilk test has the best power for a given
level of significance, followed closely by the Anderson-Darling test. Most existing tests are
based on some global properties of normal distributions. Both global and local approaches
have their advantages and deficiencies. The main difference between the global and local
approaches consists in the amount of calculation: rejecting normality locally is enough to
reject it globally.

2. Main results
For a function K defined on R we denote

αj(K) =

∫
R
K(t)tjdt, βj(K) =

∫
R
|K(t)tj |dt

its jth moment and absolute moment, respectively. Recall that K is called a kernel of order



q if α0(K) = 1, αj(K) = 0, j = 2, ..., q − 1, αq(K) 6= 0. Everywhere we assume that the
observations X1, ..., Xn are i.i.d. with density f.

The Rozenblatt-Parzen kernel estimator of f(x) is defined by

fh(x,K) =
1

n

n∑
j=1

1

h
K

(
x−Xj

h

)
, h > 0.

If f and K are l times continuously differentiable, then it gives rise to the estimator of
f (l)(x)

f
(l)
h (x,K) =

1

n

n∑
j=1

1

hl+1
K(l)

(
x−Xj

h

)
. (1)

In asymptotic statements the sample size n tends to infinity and the bandwidth h depends
on n but this dependence usually is not reflected in the notation. Therefore the expression
of type o(hq) presumes that n→∞.

Theorem 1. Suppose that f is infinitely differentiable and K has a continuous derivative
of order l. Further assume that K and K(l) have absolute moments of all orders,

lim sup
j→∞

∣∣∣∣∣f (j)(x)

j!
βj+1(K)

∣∣∣∣∣
1/j

= 0, lim sup
j→∞

∣∣∣∣∣f (j)(x)

j!
βj+1(K

(l))

∣∣∣∣∣
1/j

= 0,

∥∥∥K(l)
∥∥∥
C(R)

= sup
t∈R

∣∣∣K(l)(t)
∣∣∣ <∞.

Then

Ef
(l)
h (x,K) =

∞∑
i=0

f (i+l)(x)

i!
(−h)iαi(K)

and

var
(
f
(l)
h (x,K)

)
=

1

nh2l+1

{ ∞∑
i=0

f (i)(x)

i!
(−h)iαi(M)− h

[
hlEf

(l)
h (x,K)

]2}

where M =
[
K(l)

]2
and the series converge for all h ∈ R. Consequently, if K is a kernel

of order q, then

Ef
(l)
h (x,K)− f (l)(x) =

f (q+l)(x)

q!
(−h)qαq(K) +O(hq+1), (2)

var
(
f
(l)
h (x,K)

)
=

1

nh2l+1

{
f(x)

∫
R
M(t)dt+O(h)

}
.

With the function K we can associate matrices

Aq(K) =


α0(K) α1(K) ... αq(K)
α1(K) α2(K) ... αq+1(K)
... ... ... ...

αq(K) αq+1(K) ... α2q(K)

 , Bq = Aq(K
2).

In the next theorem we prove the free-lunch effect, for simplicity limiting ourselves to
estimation of f(x).



Theorem 2. Suppose that f and K are continuous, ‖K‖C(R) <∞,

lim sup
j→∞

∣∣∣∣∣f (j)(x)

j!
βq+j+1(K)

∣∣∣∣∣
1/j

= 0,

detAq(K) 6= 0. (3)

Let a vector b ∈ Rq+1 have components b0 = 1, b1 = ... = bq−1 = 0, bq 6= 0 and set
a = Aq(K)−1b. Then

Efh(x, TaK)− f(x) =
f (q)(x)

q!
(−h)qbq +O(hq+1), (4)

var (fh(x, TaK)) =
1

nh

{
f(x)b′Cqb+O(h)

}
(5)

where Cq = [Aq(K)−1]′BqAq(K)−1 and b′Cqb > 0. The terms of higher order in h in (4)
and (5) retain their magnitude as bq → 0.

Corollary 1. Denote the elements of Aq(K)−1 by Aij
q , i, j = 0, ..., q, c = (1, 0, ..., 0)′ ∈

Rq+1 and d = (0, ..., 0, bq)
′ ∈ Rq+1. Then b = c+ d. As bq → 0,

(TaK)(t) →

(
q∑

i=0

Ai,1
q ti

)
K(t),

b′Cqb = c′Cqc+O(bq)→ (Cq)11 =
∑
i,j

A1i
q (Bq)ijA

j1
q

It follows that in (4) bq can be made as small as desired, while (5) retains its magnitude as
we do this.

Remark 1. One can show that Bq is positive definite and (3) holds if K is nonnegative.
In the next theorem we give conditions sufficient for the free-lunch effect when f is not

infinitely differentiable and K does not possess moments of all orders.

Theorem 3. Suppose that (3) holds, f is (q+1)-times continuously differentiable, ‖f ′‖C(R)+∥∥f (q+1)
∥∥
C(R)

<∞ and β2q+1(K) + β2q+1(K
2) <∞. Then (4) and (5) are true.

Now we turn to the second subject of this paper: testing for local normality. More
generally, consider the expression F (x) =

∑L
l=0 gl(x)f (l)(x) where {gl(x)} are given

functions and the senior coefficient gL is different from zero at the given point x. We can
test the null hypothesis H0 : f satisfies the equation F (x) = 0 against the alternative
hypothesis Ha : F (x) 6= 0. It is convenient to use the differential operator D defined by
(Df)(x) = F (x). Since the derivative f (l)(x) is estimated by (1), it is natural to estimate
F (x) by

F̂h(x) =
L∑
l=0

gl(x)f
(l)
h (x,K) =

1

n

n∑
j=1

L∑
l=0

gl(x)

hl+1
K(l)

(
x−Xj

h

)
. (6)

As one can see from part (a) of the next theorem, under the null hypothesis it also makes
sense to consider the random variable Ĝh(x) = F̂h(x)/h. Provided that

f(x)gL(x) 6= 0 (7)

let Ψ denote a normal variable distributed as N
(

0, f(x)α0

([
gL(x)K(L)

]2))
.



Theorem 4. Assume that f is infinitely differentiable and K has L continuous derivatives.
Suppose that K is of order 1 and that

max
l=0,...,L

lim sup
j→∞

∣∣∣∣∣f (j)(x)

j!
βj+1(K

(l))

∣∣∣∣∣
1/j

= 0, max
l=0,...,L

∥∥∥K(l)
∥∥∥
C(R)

<∞.

Then the following statements are true:
(a) The bias of (6) is given by EF̂h(x)− F (x) = −hα1(K)(Df ′)(x) + O(h2). Con-

sequently, under H0

EF̂h(x) = O(h). (8)

If, however, EF̂h(x)→ const 6= 0, as h→ 0, then F (x) 6= 0 and H0 can be rejected.
(b) If nh2L+1 → ∞ and (7) holds, then under the null plim F̂h(x) = 0 (this equation

is preferable to (8) because in practice EF̂h(x) is unknown).

(c) If nh → ∞ and (7) holds, then (nh2L+1)1/2
[
F̂h(x)− EF̂h(x)

]
d−→ Ψ. If, in

addition, nh2L+3 → 0 then (nh2L+1)1/2
[
F̂h(x)− F (x)

]
d−→ Ψ.

(d) If nh→∞, nh2L+3 → 0 and (7) holds, then under the null (nh2L+3)1/2Ĝh(x)
d−→

Ψ.

3. Monte Carlo simulations
The main point of Theorem 2 is that the asymptotic bias is regulated by the constant bq in
(4). This point has been sufficiently illustrated by simulations in Withers and Nadarajah
[2012], although the construction of their estimator is more complex than ours. Controlling
the variance of their estimator was not their direct purpose but they showed that the mean
squared errors did not increase when n increased. Owing to the general identity E(X −
c)2 = var(X) + [Bias(X)]2 , this confirms that the variance in (5) retains its magnitude.
Thus we do not need to illustrate the free lunch effect on the computer.

Now we report the results of simulations for Theorem 4. We have chosen two densities
to test: the standard normal, which satisfies the equation f ′(t) + tf(t) = 0, and the Cauchy
density, which does not satisfy that equation. We have selected the kernel K ∼ N(0.1, 1).
This kernel is of order 1, as required in Theorem 4 where L = 1. A nonzero first moment
α1(K) increases bias, as seen from (2), and our simulations show that this increase is
significant when, for example, the kernel K ∼ N(1, 1) is used. Using values α1(K)
positive and smaller than 0.1 did not improve the estimation.

We have experimented with sample sizes ranging from 1000 to 200,000. Increasing
the sample size beyond 100,000 had little effect on the fit, as measured by the Root Av-
erage Squared Error (RASE). The RASE decreased from 0.025 to 0.006, as the sample
size increased, for both densities considered. Since the idea behind estimating a differential
equation is to combine the estimates of the density and its derivatives, the bandwidth should
provide a good estimation of the density and its derivatives in the first place. This is how the
bandwidths were chosen. They ranged between 0.15 and 0.35, slightly decreased when the
sample size increased and were a little smaller for the Cauchy density than for the standard
normal.

In case of the standard normal density the estimator from Theorem 4 estimates g(t) =
f ′(t) + tf(t), which is zero. As the sample size increases, the maximum absolute value of
the estimator decreases from 0.039 to 0.017, with little change thereafter. The main sign
that zero is being estimated is that the estimator behaves erratically, without approaching



any particular shape with the increase in the sample size. On the other hand, in case of the
Cauchy density the function g(t) is not identically zero. Naturally, the estimator approaches
its shape. Overall, from our simulations we derive the following conclusions. In practice,
one often cannot experiment with sample sizes. As usual, it is easier to reject the null rather
than accept it. If the estimator seems to approach a particular shape, then it cannot tend to
zero and the null hypothesis should be rejected.

Overall, from our simulations we derive the following conclusions. The bias is indeed
regulated by the moment α1(K). In theory it can be made as small as desired but in practice,
starting from some point, the noise in the data dominates this effect. As usual, it is easier
to reject the null rather than accept it. If the estimator seems to approach a particular shape,
then it cannot tend to zero and the null hypothesis should be rejected.
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