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Abstract     

 

The use of data collected from market research and opinion surveys is common in 

social and business areas. Probability samples are usually the first option for data 

collection though they are quite often excluded due to the non existence of a suitable 

sampling frame. In addition to the lack of randomness of sample data, further 

problems are caused by inadequate sample representativeness for some population 

characteristics, limitations of the measuring instrument and occurrence of 

measurement errors. In these situations, robust statistical techniques can be a valid 

option for estimation purposes as they are not sensitive to sample biases. The main 

aim of this study is to evaluate the performance of robust estimators, particularly 

Huber M-estimator, Tukey's biweight and Least Trimmed Squares (LTS) estimators, 

when compared to the sample mean and median, and applied to different types of 

variables, diverse sampling methods and dimensions. Quantitative and qualitative 

ordinal Likert type variables with 4, 6 and 10 point were used. Samples were 

generated by stratified and quota methods, both with dimensions 50, 100 and 300. 

Results show the best behavior of the Huber and the Tukey's biweight estimators in 

most situations, particularly for quantitative variables, for both sample methods. The 

LTS estimator performed worse than any other estimator, being better solely in the 

case of ordinal variables with a 4 point scale, sharp skewness and high kurtosis. 
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1. Introduction 

In studies based on survey sampling the use of inferential techniques is a sensitive 

field. Surveys are frequently used in social and business research to study values, 

beliefs, attitudes and behaviors. Many times it is difficult to get a sampling frame for a 

certain target population, so nonrandom methods such as quota sampling are often 

used. In survey sampling, independent and identically distributed (i.i.d.) observations 

is a rare situation. Even when a random selection is possible, based on a defined finite 

population, missing data occurs and randomness is not completely guaranteed. 

Without random data, the application of classical inferential methods is obviously 

compromised (Hampel, 2000), and robust techniques need to be applied.  

The empirical knowledge accumulated in many years of survey and opinion polls 

practice shows that results from nonrandom sampling methods, such as quota 

sampling, are close to those obtained by probabilistic methods, particularly when a 

careful data collection process is guaranteed (Cochran, 1977).  

Hoaglin et al. (1983: 1) refers that “robust and resistant methods, instead of being the 

best possible in a narrowly defined situation, are “best” compromises for a broad 

range of situations and, surprisingly often, are close to “best” for each situation alone. 

Whereas distribution-free methods treat all distributions equally, robust and resistant 

methods discriminate between those that are more and less plausible”. The robust 

theory and applications are not only suited for small deviations caused by marginal 

values or gross errors changing the normal distribution, frequent in sampling studies, 

but also when deviations occur in usually assumed assumptions, for any parametric 

model, such as independence.  



Cuevas (1994) argues that, after four decades of studies and applications, the 

resistance to the widespread use of robust techniques still remains, probably due to the 

lack of communication and dialogue between theorists and users (statisticians). The 

increasing availability of electronic means and high-efficiency in the treatment of 

large quantities of information caused a stimulus on statistical analysis by an audience 

mostly of non-statistical professionals. Any theory that cannot communicate with this 

audience tends to be away from several fields of application. 

This investigation arises from the interest in robust statistical methods and its 

applications to surveys and market research real data, in social and business sciences. 

It proposes an evaluation of robust techniques applications when models and 

assumptions fail, thus contributing to the dissemination of these methods. The aim of 

this study is to compare the performance of three robust location estimators, the Huber 

M-estimator, the Tukey’s biweight and the Least Trimmed Squares (LTS), to estimate 

a location parameter, in presence of different variable types, sampling processes and 

sample dimensions. 

 

2. Robust estimation 

The robust theory was introduced by Huber (1964) to solve a location problem for the 

parameter � when the F(x) distribution is approximately known. The author 

considered that the observations were normally distributed with variance equal to 1, 

partly affected by gross errors with H(x) distribution, according to the contaminated 

model ���� = �1 − 	�Φ��� + 	. 
���, with 0 ≤ 	 < 1 a known value, with standard 

normal distribution Φ��� and where H is arbitrary. With this model, the concept of 

“neighborhood” of a strictly parametric model arises for the first time and robust 

methods can be assumed as a natural development from the classical parametric 

models. 

The location M-estimators are employed in the same study to solve a location problem 

when the distribution is not exactly normal. Based on the maximum likelihood 

method, an estimator is defined as �� = �����;… ; ��� that maximizes∏ ���� , ������� . 

According to Huber, an M-estimator minimizes a more general odd function, ∑ ����, ������� , where � is a defined function in ℱ�Θ, ℱ represents a function family 

and Θ is a parameter space. Consider  ��, !� = �"/"!����, !�, so �� satisfies the 

implicit equation ∑ ���; ��� = 0. The mean and the median are solutions of this 

equation, so they belong to this group of estimators. The Huber M-estimators family 

shows a quadratic odd function in the center and linear in the tail, with c as a constant 

��$� = %12$'																	)*	|$| ≤ ,,|$| − 12 ,'				)*	|$| > ,
. 

Consider $� = ��� − ��� /�⁄ , where /� is a scale measure, frequently the normalized 

median of absolute deviation, (normalized MAD). The corresponding   and the 

weight functions 1 =  �$�/$ are  �$� = 2$																				)*	|$| ≤ ,,. )34�$�				)*	|$| > , .,													1�$� = 51																				)*	|$| ≤ ,67 . )34�$�				)*	|$| > ,. 
With this estimator, if the standardized distance to the location estimate is lower than 

the tuning constant c, the observation has a weight equal to 1. For values larger than 

this tuning constant the weight decreases, but all observations are used to produce the 

estimate. However, this estimator might still be sensitive to extreme observations.  

A family of estimators, less sensitive to the presence of extreme values, is the 

redescendent family. These estimators have a finite point rejection, so after a certain 

value, the observations are excluded from the estimate (Hampel, 2001). The most 

popular robust family is the Tukey’s biweight, with good overall performance, 

robustness of efficiency and resistant (Hoaglin et al., 1983). The odd function, with 

tuning constant c is 



��$� = %16 91 − �1 − $'�:;							)*	|$| ≤ 116 																																					)*	|$| > ,
. 

with , > 0 and  $� = ��� −<� ,<=>⁄ . The corresponding    and weight functions 1 =  �$�/$ are  �$� = 2$�1 − $'�'						)*	|$| ≤ 10																									)*	|$| > 1.,                1�$� = 2�1 − $'�'							)*	|$| ≤ 10																							)*	|$| > , . 
Other estimators have been proposed, such as the Least Trimmed Squares (LTS) 

widely used in regression analysis (Rousseeuw and Leroy, 1987). In order to estimate 

a parameter !, in the univariate case, the LTS estimator is obtained by the 

minimization of ∑ �?'��:�A��� , where ℎ = �4 2⁄ � + 1 and �?'��:� are the ordered square 

residuals. From the ordered observations, 4 − ℎ + 1 subsamples are drawn with h 

observations each. The subsamples mean is calculated ��̅�D�, E = 1,… , �4 − ℎ + 1�� 
and the correspondent sum of squaresF/G�D�, E = 1,… �4 − ℎ + 1�H. The LTS estimate 

is the mean of the subsample with smallest sum of squares. The LTS algorithm is 

simpler and easier to calculate then the M-estimators.  

Previous studies with M-estimators and LTS estimators are mainly theoretical and 

only a few applications to real data are known. The Princeton study, published by 

Andrews et al. (1972), is the first systematic and exhaustive investigation comparing 

robust estimators. It has been followed by applications with biomedical data and in the 

chemical area (Gross, 1973; Stigler, 1977; Rocke et al., 1982; Hill and Dixon, 1982), 

using point estimation and confidence intervals with robust estimators of location and 

scale (Gross, 1976; Boos, 1980). In most recent studies robust estimation has been 

related to multivariate problems and methods such as principal components, 

discriminant analysis or multivariate regression (Marona, 1976; Portnoy and He, 

2000). Stigler (1977) proposed a comparison between robust estimators applied to real 

data and evaluated their performance with the mean square error (MSE), the index of 

relative error (RE) and its corresponding variation (SE). Considering the comparison of 

p estimators (!I), for k groups of �D elements, the mean absolute error is )D =JK�∑ L!I�D − !DLM��� , where !I�D is the value of the estimator !I� for �D and !D is the “true 

value” for the jth data set. The relative error can be calculated by *�D = L!I�D − !DL/)D. If *�D < 1 it means that the estimator has a smaller error than the average error of all 

estimators under analysis. The index of relative error NO��� for the estimator !I� is 

calculated by the average of the estimators relative error across k data sets, NO��� =PK�∑ *�DQD�� . The performance variation of estimator !I� through the several data sets is /O��� = R�P − 1�K�∑ F*�D − NO���H'QD�� S�/'. A small value of /O���reflects consistent 

performance.  

 

3. Methodology 
The need for application and disclosure of robust estimators is steel necessary in social 

and business areas, using sampling studies real data. The present research arises from 

the difficulty of analyzing data obtained by sampling surveys, frequently with 

nonrandom sampling processes. It aims to provide statisticians and survey and market 

research professionals with a performance evaluation of alternative techniques of 

location estimation, using robust statistics, different variable types, sampling methods 

and sample dimensions. Hampel states that “statistics is most alive when reacts to the 

needs of applications” (1997: 3) and supports the existence of some areas where the 

application of robust techniques can still be further explored. This is the case of 

information collected on people’s behavior, beliefs, perception or motivations where 

Likert-type items are the most used form of measuring scales, with a finite number of 

values anchored at each point or only at the end. Statistical analysis considering this 



type of variables as metric is frequent and based on the underlying assumption of 

equal distances between adjacent categories implicit in the usual quantification 

(assigning consecutive integers). But this is not a consensual assumption.  

The present study uses quantitative variables as well as Likert-type items with ten, six 

and four points, with different levels of skewness and kurtosis. The identification of 

the 7 variables under analysis and their distributional characteristics are presented in 

Table 1. 

 

Table 1 – Population distribution characteristics by variable type 

Quantitative 
Likert-type items 

10 points 6 points 4 points 

age p9 p4.7 p4.3 p4.6 inc7 inc9 

Slightly 

asymmetric  

Slightly 

asymmetric 

Slightly 

asymmetric 

Asymmetric Sharp asymmetry  

Extreme values 

Hight kurtosis 

Slightly 

asymmetric 

Sharp 

asymmetry 

 

Population data were obtained from two surveys A and B (NA=1800 and NB=1500). 

Samples with 50, 100 and 300 observations were drawn from the two populations. 

Several earlier studies used samples with dimensions from 10 up to 50 cases (Hoaglin 

et al., 1983). The “large sample” definition is associated with more than 30 cases, 

some authors referring the need to use 50 or more cases, when the population structure 

is unknown (Chernick, 1999; Lohr, 1999).  

The sampling methods are considered a central issue in survey sampling. Stratified 

and quota samples were selected. To construct quota samples some observations were 

intentionally excluded, to generate a group of samples with a lack of randomness. 50 

samples were generated for each dimension of 50, 100 and 300 cases.  

Huber and Tukey´s biweight were the initially selected M-estimators, but they need 

large data variability for correct calculation, difficult to find on four points Lykert-

type items; so the LTS estimator was also included in the analysis. For comparison 

purposes, the usual mean and median estimators were also used. The five estimators 

were applied to all generated samples across sampling methods, sample sizes and 

variable types in a total of 1500 point estimates calculated for each variable. All 

samples were generated by Complex Samples, an add-in on the IBM SPSS Statistics 

and by created routines for nonstandard situations.  The point and interval estimates 

were calculated with IBM SPSS Statistics and S-Plus.  

In order to analyze the estimators’ behavior, estimates distributions were compared for 

each variable, sampling method and sample size. Confidence intervals were also 

calculated to estimate location, for each sampling method and sample size for 

quantitative data and 10 points Likert-type item. This is an opinion variable, different 

from quantitative demographic data. The large number of points allows a certain data 

variability and enables a greater detail in the discrete structure of opinion, as referred 

by Bryman and Cramer (2003). Furthermore, the variable distribution is close to 

normal in skewness and kurtosis. The simplicity of use, when the population 

distribution is unknown and data are based on a sample, is a good argument for the 

choice of bootstrap confidence intervals. The stratified bootstrap and percentile 

method were used to construct the interval estimates. This method is the most suitable 

for M-estimators (Wilcox, 2003). The mean square error (MSE), the index of relative 

error (RE) and corresponding variation (SE) were used to compare the estimators’ 

performance, as referred by Stigler (1977). 

 

4. Results 
Applications on quantitative data reveal differences on estimates distributions with a 

greater dispersion for those obtained by quota samples. Huber and Tukey´s biweigth 

are the only two estimators with identical estimates distributions, on samples with 100 

and 300 cases, for both sampling methods. This is an important result showing that 



these M-estimators generate similar results with random and nonrandom quantitative 

data, when the sample dimension is large.  

The 10 points Likert-type item shows identical estimates distribution for Huber and 

Tukey´s biweigh estimators among the three stratified sample sizes. In quota samples 

the estimates distributions show again greater dispersion. The distribution of the 

median is the one with lowest dispersion. The 6 point Likert-type items produce 

different results according to the sampling method and distribution shape. For the 

slightly asymmetric variable distribution and stratified samples, the LTS estimates 

distribution is the most dissimilar; for quota samples almost all distributions are 

different with the median showing the smallest dispersion in all sample sizes. The 

estimates variation is highest when quota samples are associated to highly skewed 

distributions. 

The sample size effects show decreasing variance on estimates distributions in the 

majority of the created scenarios. The exception occurs with the quantitative variable 

and the 10 point Likert-type item, on quota samples: the increasing sample size does 

not reduce the variance. The 6 point Likert-type items with minor asymmetry increase 

the LTS bias; sharp asymmetry and high kurtosis associated with large sample size 

reduce LTS and the variance of mean, but decrease bias for all estimates distributions. 

The 4 points Likert-type items associated with increasing sample size reduce bias of 

the median in stratified samples and the bias of LTS bias in quota samples. The 

decrease of Huber and Tukey´s biweight variance distributions do not occurs with 4 

point Likert-type items characterized by sharp asymmetry. 

The bootstrap confidence intervals for quantitative data are similar for all estimators 

and all sample sizes, on stratified and quota samples, the only exception being the 

quota sample size 300 where the interval does not include the parameter. The 

bootstrap confidence intervals for the 10 points Likert-type item are identical in both 

sampling methods and reveal similarity between the median and the Tukey´s biweight 

estimators, the later showing smaller dispersion for samples with 50 and 100 cases.  

When applied to quantitative data, the Huber and the Tukey´s biweight estimators 

show the best performance. Tukey´s biweight still performs best when applied to the 

10 point Likert-type item, in stratified samples. The LTS performance shows high 

values of the relative error index for both sampling methods, frequently increasing as 

sample size increases; the performance of LTS is less distant from the others 

estimators’ performance for stratified samples.  

  

5. Conclusions 

This paper studies the performance of Huber and Tukey´s biweight M-estimators and 

LTS, either individually or by comparison to the mean and the median estimators. The 

performance was evaluated for different sample sizes, variable types, for stratified and 

quota samples. The use of robust techniques is justified because real data do not 

follows the theoretical models, showing deviations and errors or marginal values. In 

these situations robust procedures should be a preferential choice when confronted 

with classical procedures.  

The Huber and Tukey´s estimators presented a good performance, followed by the 

median and the mean in almost all studied scenarios. In fact, when applied to 

quantitative real data, the former estimators show a similar performance in each 

sampling method, with a relative error index and corresponding variation mostly often 

smaller than median’s and always better than the mean’s. M-estimators generate 

similar estimates results with random and nonrandom quantitative data, with large 

samples. In addition, its bootstrap confidence intervals have lower range, particularly 

in stratified samples. 

The LTS estimator reveals the poorest performance in both sampling methods and 

sample sizes. Only two exceptions are noticed: for the 6 point Likert-type item with a 

sharp asymmetry and high kurtosis in both sampling methods, and in the 4 point 

Likert-type item with minor skewness. 



In general, results point out the better performance of the Tukey´s biweight and also 

the Huber M-estimators to estimate location for real quantitative data, with large 

stratified or quota samples. For a 10 points Likert-type item the choice should still be 

the Tukey´s biweight, applied to stratified samples. For data obtained from Likert-type 

items with smaller number of points, the median is still is the best choice, followed by 

M-estimators, except for sharp skewed and high kurtosis distributions.  

 

References 
 

Andrews, D. F., Bickel, P. J., Hampel, F. R., Huber, P. J., Rogers, W. H. and Tukey, J. 

W. (1972) Robust Estimates of Location: Survey and Advances, Princeton University 

Press, New Jersey. 

Boos, D. D. (1980) “A new method for constructing approximate confidence intervals 

from M-estimates,” Journal of the American Statistical Association, 75(369), 142-145. 

Bryman, A. and Cramer, D. (2003), Análise de Dados em Ciências Sociais: 

Introdução às Técnicas Utilizando o SPSS para Windows, Celta Editora, Lisboa. 

Chernick, M. R. (1999) Bootstrap Methods: A practitioner's guide, Wiley, NY. 

Cochran, W. G. (1977) Sampling Techniques, 3ª ed, Wiley, New York. 

Cuevas, A. (1994) “Estimación robusta,” Estadistica Española, 36(137), 351-355. 

Discussion to Zamar´s paper. 

Gross, A. M. (1973) “A Monte Carlo swindle for estimators of location,” Applied 

Statistics, 22(3), 347-353. 

Gross, A. M. (1976) “Confidence interval robustness with long-tailed symmetric 

distributions,” Journal of the American Statistical Association, 71, 409-416. 

Hampel, F. (1997) “Is statistics too dificult?,” Research Report nº 81, Seminar für 

Statistik, Eidgenossische Technische Hochschule (ETH), Zürich. 

Hampel, F. (2000) “Robust inference,” Research Report nº 9,. Seminar für Statistik, 

Eidgenossische  Technische Hochschule (ETH), Zürich. 

Hampel, F. (2001) “Robust statistics: A brief introduction and overview,” Research 

Report nº 94, Seminar für Statistik, Eidgenossische Technische Hochschule (ETH), 

Zürich. 

Hill, M. and Dixon, W. J. (1982) “Robustness in real life: A study of clinical 

laboratory data,” Biometrics, 38, 377-396. 

Hoaglin, D. C., Mosteller, F. and Tukey, J. W. (1983) Understanding robust and 

exploratory data analysis, John Wiley & Sons, New York. 

Huber, P. J. (1964) “Robust estimation of a location parameter,” The Annals of 

Mathematical Statistics, 35, 73-101. 

Lohr, S. L. (1999) Sampling: Design and Analysis, Duxbury Press, New York. 

Marona, R. A. (1976) “Robust m-estimators of multivariate location and scatter,” The 

Annals of Statistics, 4(1), 51-67. 

Portnoy, S. and He, X. (2000) “A robust journey to the new millennium,” Journal of 

the American Statistical Association, 95(452), 1331-1335. 

Rocke, D. M., Downs, G. W. and Rocke, A. J. (1982) “Are robust estimators really 

necessary?,” Technometrics, 24(2), 95-101. 

Rousseeuw, P. J. and Leroy, A. M. (1987) Robust regression and outlier detection, 

Wiley, New York. 

Stigler, S. M. (1977) “Do estimators work with real data?,” The Annals of Statistics, 5 

(6), 1055-1098. 

Wilcox, R. R. (2003) Applying Contemporary Statistical Techniques, Academic Press. 

 

 

 

 

 

 


