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Abstract 

 

Multilevel models are a popular method of clustered and longitudinal data analysis in the 

social, behavioral and medical sciences. The standard two-level random-coefficient 

model for continuous responses nearly always assumes a constant residual error variance 

at level-1. However, there is no reason why this homogeneity assumption should hold in 

practice and in many studies it will be intrinsically interesting to relax it. In this paper, we 

model the level-1 residual error variance as a function of predictors and we allow a 

random-intercept and random-coefficients to be included in this function. We illustrate 

our approach through a real data application to modeling school effects on student 

achievement. 
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1. Introduction 

 

Multilevel models (Goldstein, 2011; Snijders and Bosker, 2012) – also known as 

hierarchical linear models (Raudenbush and Bryk, 2002), mixed-effects models or 

random effects models – are widely applied in the social, behavioral and medical 

sciences. The simplest and most commonly fitted model is the two-level random-

coefficient model for continuous responses. A standard assumption is that the level-1 

residual error variance is constant across the units in the data. However, there is no 

reason why this should be true and in many studies it will be intrinsically interesting to 

model this parameter as a function of the predictors and level-2 random effects. Such 

studies include those concerned with notions of inequality, segregation, consistency, 

similarity, volatility, erraticness, and the predictability of individuals within groups.  

 

In this paper we extend the two-level random-coefficient multilevel model to allow for 

heterogeneous level-1 residual error variances. Similar extensions have been considered 

by Hedeker et al. (2008) and Lee and Nelder (2006), among others. Specifically, we 

model the level-1 variances as a function of the predictors and we allow both a random-

intercept and random-coefficients to be included in this variance function. We present 

these methodological developments in Section 2. Section 3 illustrates our approach 

through a real data application to modeling school effects on student achievement. We 

conclude with a discussion in Section 4. 

 

 

  



2. Methods 

 

Consider the two-level random-coefficient multilevel model for continuous response     

on level-1 unit   (          ) in level-2 unit   (         ), modeled, for simplicity, 

in terms of a single level-1 predictor,    . This model is written as  

 

                            
 

(
   
   
)  {(

 
 
)  (

   
 

       
 )} 

 

     (    
 ) 

 

where     and     are the level-2 random-intercept and random-slope effects and     is 

the level-1 random effect or residual error term. The level-2 and level-1 random effects 

are assumed normally distributed and independent across levels. The level-1 residual 

error variance is assumed homogenous across of level-1 units. 

 

We can relax the homogenous residual error variance assumption by modeling it as a log-

linear function of the predictor 
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where the     and     are the level-2 random-intercept and random-slope effects. Note 

that the residual error variance is the expected variance, not the observed variance, and so 

there is no residual error in this equation. These variance function random effects are 

assumed bivariate normally distributed and independent of the mean function random 

effects. However, we can equally allow the two sets of random effects to be correlated. 

 

We fit the model described above using Markov chain Monte Carlo (MCMC) methods 

using the eStat estimation engine within the Stat-JR (pronounced “stature”) statistics 

package (Charlton et al. 2012) being developed at the Centre for Multilevel Modelling 

(CMM). We call Stat-JR from within the Stata general-purpose statistics package using 

the user-written runstatjr Stata command (Leckie and Charlton, 2013) to facilitate pre- 

and post-estimation data manipulation and graphics, although this is not a requirement of 

using Stat-JR. We specify diffuse (vague, flat or minimally informative) prior 

distributions for all parameters. We fit all models with a burn-in period of 10000 

iterations and a monitoring period of 10000 iterations. 

 

 

3. Application 

 
For our real-data application, we reanalyze the “tutorial” dataset provided with the 

MLwiN User Manual (Rasbash et al., 2012) and first analyzed by Goldstein et al. (1993). 

The data are two-level with 4,059 students (level-1 units) nested within 65 schools (level-



2 units). The response is a standardized age 16 end of school examination score. The 

main predictor variables are a standardized age 11 reading test score and student gender.  

 

Model 1 is a standard two-level random-slope model for students’ age 16 scores, but 

where we allow every school to have their own residual error variance. The model is 

written as 
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where     is the age 16 exam score for student   (        ) in school   (        ), 

     is their corresponding age 11 score when they entered their school, and      is a 

binary indicator for whether the student is a girl. 

 

Table 1 presents the results for this model. Turning our attention to the mean function, we 

see that, in the average school, a one standard deviation increase in age 11 scores is 

associated with a 0.55 standard deviation increase in age 16 scores. However, the strength 

of this relationship varies between schools as illustrated by the plotted mean functions in 

Figure 1 (left panel). Having adjusted for age 11 scores, we see that girls score 0.17 of a 

standard deviation higher than boys at age 16. Now turning our attention to the variance 

function, we see that the intercept variance appears significant and so students in some 

schools appear to score more variably at age 16 that students in other schools, even after 

adjusting for their age 11 scores and gender. This suggests that schools influence the 

variability in student responses as well as their mean response. 

 
Model 2 adds the age 11 scores and student gender predictor variables to the variance 

function. The model is written as 
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The results for the mean function are broadly similar to Model 1. Turning our attention to 

the variance function, we see that age 11 scores have a significant negative effect on the 



level-1 residual error variances. Thus, the variability in students’ age 16 scores around 

their school lines decreases with increasing age 11 scores. Put differently, students who 

were scoring low at intake have more dispersed age 16 responses than students who were 

scoring high at intake; they are less predictable. Gender also has a significant negative 

coefficient and so boys are also found to score more erratically than girls. 

 

Table 1 Results for Models 4, 5 and 6 fitted to the student achievement data 

 

 Model 1 Model 2 Model 3 

Parameter Mean SD Mean SD Mean SD 

Mean function       

   Intercept -0.11 0.04 -0.11 0.05 -0.11 0.04 

   Age 11 scores 0.55 0.02 0.55 0.02 0.55 0.02 

   Girl 0.17 0.03 0.17 0.03 0.17 0.03 

   
  Intercept variance 0.10 0.02 0.11 0.02 0.11 0.02 

   
  Slope variance 0.02 0.01 0.02 0.01 0.02 0.01 

     Intercept-Slope correlation 0.51 0.15 0.53 0.15 0.52 0.14 

       

Variance function       

   Intercept -0.63 0.04 -0.57 0.05 -0.57 0.05 

   Age 11 scores – – -0.07 0.02 -0.07 0.03 

   Girl – – -0.10 0.05 -0.10 0.06 

   
  Intercept variance 0.06 0.02 0.06 0.02 0.06 0.02 

   
  Slope variance – – – – 0.03 0.01 

     Intercept-Slope correlation – – – – -0.15 0.29 

       

Cross-function correlations       

      Intercept-Intercept correlation 0.40 0.17 0.45 0.15 0.46 0.16 

      Slope-Intercept correlation 0.76 0.14 0.77 0.13 0.77 0.14 

      Intercept-Slope correlation – – – – 0.03 0.24 

      Slope-Slope correlation – – – – -0.04 0.27 

       

Note: The reported means and standard deviations are the posterior means and posterior 

standard deviations of the corresponding parameter chains. 

 

Model 3 allows the effect of age 11 scores in the variance function to vary randomly 

across schools. The model is written as 
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The results for the mean function are again broadly similar to Model 1. Turning our 

attention to the variance function, we see that the slope variance on age 11 scores appears 

significant and so there is some suggestion that the relationship between age 16 

achievement dispersion and age 11 scores does vary from school to school. Figure 1 

(right panel) gives a sense of this variability by plotting the variance function for each 

school. 

 

Figure 1. Model 1 predicted mean functions (left panel) and Model 3 predicted variance 

functions (right panel) 

  
 

 

4. Conclusion 
 

We have extended the two-level random-coefficient model for continuous responses by 

modeling the level-1 residual error variance as a log-linear function of predictors and 

these predictors are allowed to enter into this variance function with random coefficients. 

Thus, both the response and the level-1 residual error variance are jointly modeled as 

random-coefficient models where the random effects in each model are allowed to 

covary. This extension allows for a substantively richer and more realistically complex 

class of two-level multilevel models. The principle of modeling the residual error 

variance in two-level models as a function of the predictors and further random effects 

generalizes to more complex multilevel models, including those with three- and higher-

levels, crossed-random effects, and discrete responses.  

 

A full length and extended version of this paper is currently in preparation (Leckie et al., 

2013). 
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