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Abstract 
I develop new linear discriminant function called ‘Revised IP-OLDF’ based on MNM criterion. It is 
compared with Fisher’s linear discriminant function, quadratic discriminant function, logistic 
regression and soft margin SVM by 100 fold cross-validation. One hundred re-sampling data sets are 
generated from four kinds of original data such as: Fisher’s Iris data (15 models), Swiss bank note data 
(16 models), CPD (Cephalo Pelvis Disproportion) data (19 models) and student data (31 models). The 
mean of error rates of 81 models of these methods are computed by LINGO and JMP. It is concluded 
that Revised IP-OLDF is better than other methods. In addition to these results, LDF and QDF never 
recognize linear separable data.  
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1. Introduction 
In this paper, Optimal Linear Discriminant Functions based on MNM (Minimum Number of 

Misclassifications) are proposed. IP-OLDF looks for the vertex of Optimal Convex defined on the 
discriminant coefficient space if data is in general position. The number of misclassifications (NM) of 
the interior point of Optimal Convex equals to MNM. It may not find the vertex of Optimal Convex if 

data isn’t in general position. Revised IP-OLDF looks for the interior point of true Optimal Convex 
directly. Linear discriminant functions corresponding to the interior point discriminates or 

misclassifies same cases, and there is no cases on the discriminant hyper-plane f(xi)=0. On the other 
hand, all discriminant functions except for Revised IP-OLDF can’t count NM correctly, because there 

may be the cases on f(xi)=0. Shinmura (2010) shows that IP-OLDF has solved many problems of the 
discriminant analysis, and gives us new knowledge such as “monotonous decrease of MNM”. And 
Revised IPLP-OLDF is compared with Fisher’s linear discriminant function (LDF) and logistic 
regression by 100 fold cross validation (Shinmura, 2011). 

The aim of this research is to show the following three points.  
1) Revised IP-OLDF is compared with four methods (LDF, QDF, the logistic regression and S-SVM) 

by four kinds of real data such as Fisher’s iris data, CPD (Cephalo Pelvis Disproportion) data, 
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Swiss bank note data and student test data.  
2) Next, 100 bootstrap samples are generated from above real data. Revised IP-OLDF and three 

methods (LDF, the logistic regression and S-SVM) are compared with the mean error rates of 81 
different discriminant models by 100 fold cross validations. The mean error rates of Revised 
IP-OLDF are almost less than those of three methods. 

3) Revised IP-OLDF and four methods are compared with the pass/fail determination of six 
examinations, which are trivial linear separable data such as Swiss bank note data. It is concluded 
that LDF and QDF and S-SVM (if penalty c is small such as c=1) can’t recognize the linear 
separable data. S-SVM (if penalty c is large number such as c=10000) and logistic regression can 
almost recognize the linear separable data. 

2.  Many Problems of discriminant analysis 
Discriminant Rule is very simple as follows: If yi*f(xi)>0, xi is classified to class1/class2 

correctly. If yi*f(xi)<0, xi  is miss-classified. There are many unresolved problems hidden in this 
simplicity. These problems are resolved by IP-OLDF and Revised IP-OLDF. 
1) LDF and QDF based on variance-covariance matrices can’t recognize the linear separable data 

(MNM=0), therefore these methods should not be used in pattern recognition, medical diagnosis, 
genome diagnosis, and the pass/fail of exams that is trivial linear separable data. In addition to this, 
these methods of SPSS and JMP can’t work properly for the data if some variables belonging to 
one class /both classes have constant values. 

2) All methods except for Revised IP-OLDF can’t count error rates correctly, because these can’t 

prevent the case xi on the discriminant hyper-plane (f(xi)=0) .  
3) IP-OLDF explains the relation of the number of misclassifications (NM) and the discriminant 

coefficients. And MNM decreases monotonously.  

3.  Discriminant Functions 
After 1997, several new methods are developed such as IP-OLDF and Revised IP-OLDF, 

LP-OLDF and Revised IPLP-OLDF. In this paper, Revised IP-OLDF is compared with S-SVM, 
LDF, QDF and logistic regression by four kinds of real data as training data. Next, Revised IP-OLDF 
is compared with S-SVM, LDF, and logistic regression by 100 fold cross validation. Revised 
IP-OLDF and S-SVM are solved by LINGO that is mathematical programming solver (Schrage, 2003), 
Shinmura(2010)). LDF, QDF and logistic regression are solved by JMP (Sall et.al. (2004)). 

3.1 Optimal Linear Discriminant Functions 
IP-OLDF is defined in formula (3.1). If xi is classified correctly, ei=0 and yi*fi(b)= yi* (xi’b+1) 

>=0. If xi is misclassified, ei =1 and yi* fi (b)>= -999999. This means that IP-OLDF choose the 
discriminant hyper-plane fi (b)=0 for classified cases, and fi (b)= -999999 for misclassified cases by 
0/1 decision variable. If ei are non-negative real variables, it is changed to LP-OLDF that is one of 
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L1-norm linear discriminant functions. Its computational time is faster than IP-OLDF. 

MIN = Σei ;  yi* ( xi’b+1) >= - M* ei ;        (3.1) 
xi : p-independent variables, b : p-discriminant coefficients,yi = 1 / -1 for xi ∊ class1/class2, 

 ei : 0/1 decision variable , M: 1000,000 (Big constant) 

Revise IP-OLDF in formula (3.2) can find true MNM. This means there is no cases on fi (b)=0. 
If ei are non-negative real variables, it is changed to Revised LP-OLDF.  

MIN = Σei ;  yi* ( xi’b+ b0) >= 1 - M* ei ;    (3.2) 
b0: free decision variables 

3.2 H-SVM and S-SVM 
S-SVM is defined in formula (3.3) . There is no rule to decide c properly, and different c gives us 

different results. 

MIN = ||b||2/2 + c* Σei ;  yi* ( xi’b+ b0) >= 1 -  ei ;      (3.3) 
c : penalty c to combine two objectives 

3.3  Statistical discriminant functions 
Fisher defines LDF to maximize the ratio of (between classes/within class) in formula (3.4). It is 

solved by non-linear programming (NLP). If within class variance is fixed to 1, it is solved by 
quadratic programming (QP) in (3.5). NLP can obtain the local solution before 2000, and can obtain 
the global solution (MIN/MAX) after 2000. H-SVM and S-SVM are defined by QP instead of NLP, 
also. 

MIN=ｂ’(xm1-xm2) (xm1-xm2)’b/b’ ∑b；       (3.4) 
        MIN=ｂ’(xm1-xm2) (xm1-xm2)’b； b’ ∑b=1；    (3.5) 

If we accept Fisher’s assumption, the same formula of LDF is obtained in (3.6). This formula 
define the formula of LDF explicitly, nevertheless formula (3.5) define the formula of LDF implicitly. 
Therefore, statistical software packages adopt this formula. Discriminant analysis is independent of 

inferential statistics. Therefore, the leave one out (LOO) method is proposed to decide the proper 
discriminant model. In addition to LOO method, we can use model selection methods of regression 
analysis, if objective values of two groups are 1/-1 dummy variables. 

LDF：f(x)={x-(m1+m2)/2}’∑-1(m1-m2)    (3.6) 
Most of real data doesn’t satisfy Fisher’s assumption. If most of real data doesn’t satisfy variance 

covariance of two classes are not same (∑1≠∑2)．In this case, QDF is formulated in (3.7).   

f(x)=x’(∑2
-1- ∑1

-1) x/2+(m1’∑1
-1-m2∑2

-1)x+c    (3.7) 
Mahalanobis distance in (3.8) is used for the discrimination of many classes and MT 

(Mahalanobis Taguchi) method in quality control. 

D=SQRT ((x-m)’∑-1(x-m))   (3.8) 
    These discriminant functions are applied for many areas such as pattern recognition, medical 
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diagnosis, genome diagnosis, and the pass/fail of exams that is trivial linear separable data. But these 
discriminant functions are not calculated if some independent variables are constant. There are three 
cases. First, some variables that belong in both classes are the same constant. Second, some variables 
that belong in both classes are the different constant. Third, some variable that belong in one class is 
constant. SPSS excludes all variables in three cases. QDF of JMP outputs wrong discriminant result in 
case three, because it doesn’t assume this case. 

4.  Experimental Study by the original data and bootstrap data sets 
In this study, four kinds of real data are used for evaluation. In first stage, these data are used to 

examine the validity of new methods. These methods are compared with S-SVM, LDF, QDF and 
logistic regression. In second stage, 100 bootstrap samples are generated from real data. And 81 
different discriminant models of Revised IP-OLDF, S-SVM, LDF and logistic regression are evaluated 
by 100 fold cross validation. 

4.1 Four kinds of Real data 
Iris data (Edgar,1935) consists of 100 cases having four independent variables. Object variable 

consists of two species such as 50 versicolor and 50 virginica. All combinations of independent 
variables (15= 24-1) are investigated. This data is used for the evaluation of LDF. Swiss bank notes 
data (Flury & Rieduyl, 1988) consists of 200 cases having six independent variables. Object variable 
consists of two kinds of bills such as 100 genuine and 100 counterfeit bills. There are 16 different 
models for experimental sturdy. Student data consists of 40 students having five independent variables. 
Object variable consists of two groups such as 25 students who pass the examination and 15 students 
who don’t pass. All combinations of independent variables (31= 25-1) are investigated. CPD data 
consists of 240 patients having 19 independent variables. Object variable consists of two groups such 
as 180 pregnant women whose babies are born by the natural delivery and 60 pregnant women whose 
babies are born by Caesarian operation. Nineteen models selected by forward stepwise method are 
analyzed, because we can’t examine (219-1) models by all combinations of independent variables. 
There are three multi-collinearities in this data. 

4.2 100 re-sampling data sets and 100 fold cross validation 
    From above real data sets, 100 re-sampling data sets are generated as follows. 1) JMP copies 100 
data sets and adds the variable that have the uniform random number, 2) sort it by object variable 
(1/-1) and divides it into 100 data sets, 3) 100 fold cross validation are done using these 100 data sets. 

5. Results 
5.1 Original Data 
    Table 1 shows the result of Iris data. “VAR” is independent variables. “p” is the number of 
independent variables. There are 15 models in all combination of independent variables. AIC, BIC and 
Cp statistics are obtained by regression analysis. These statistics recommend full mode. LOO is the 
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NM of LOO method by SPSS. This recommend model 1 and model 3. pLDF, pQDF and pLogi are 
NM of LDF, QDF and logistic regression. MNM is MNM by Revised IP-OLDF. It recommend full 
model. SVM100 is NM of S-SVM in the case C=100. LDF, QDF logistic regression and S-SVM can’t 

exclude the cases on f(xi)=0. If we can count the number of the case on f(xi)=0 and this number is not 
zero, we had better estimate NM as (NM in the table + this number). Error rates of LDF, QDF, logistic 
regression and S-SVM are higher 2%, 2%, 1% and 2%, because sample size are 100. 
    Results of other three real data show that Revised IP-OLDF is better than four methods. 

Table 1.   Result of Iris data 

Model p VAR AIC BIC Cp LOO pLDF pQDF pLogi MNM SVM100

1 4 X1-X4 143 158 5 3 3 3 2 1 3 

2 3 X2-X4 149 161 10 4 4 4 2 2 3 

3 3 X1,X3,X4 152 164 14 3 3 3 2 2 3 
4 3 X1,X2,X4 164 176 27 5 5 6 4 4 7 
5 3 X1-X3 174 187 40 7 7 8 4 2 5 

5.2 100 fold cross validation 
One hundred bootstrap samples are generated from real data. These data sets have the same size 

(number of cases and variables) of real data. Eighty one different discriminant models of LDF, logistic 
regression, S-SVM and Revised IP-OLDF are compared by 100 fold cross-validations. There are 
100-NM and discriminant functions for 81 different models. Mean error rates, and 95% confidence 

intervals of error rates and discriminant coefficients are calculated. Table2 shows the difference 
between mean of error rates in three methods and Revised IP-OLDF. 

Table2.  The difference between mean of error rates in three methods and Revised IP-OLDF 

 LDF - MNM Logi - MNM SVM - MNM 

 Training Evaluation Training Evaluation Training Evaluation 

 Min/Max Min/Max Min /Max Min/Max Min /Max Min/Max 

Iris(15) 0.9/12.94 -0.0(1)/5.56 0.7/10.1   0.4/8.2 0.9/12.94 -0.0(1)/5.56 

Bank(16) 0.5/0.98 -1.3(2)/1.03 0/0 -1.3(2)/0.68 0.6/1.49 -1.1(1)/1.37 

Student(31) 1.2/8.61 -1.6(3)/6.77 -2.4 (2)/6.63 -3.1(7)/5.66 -0.6 (1)/15.4 -5.6(12)/2.22

CPD(19) 3.1/7.31   1.9/6.05 0.12/2.90    0/1.63 -0.9 (2)/2.57 -0.4(4)/1.68 

First two columns are the comparison of the difference between mean of error rates in LDF and 
Revised IP-OLDF for the training and evaluation samples. Minimum value of Iris bootstrap samples 
(15 different discriminant models) is 0.9%. This means that the mean error rate of LDF is 0.9% greater 
than those of Revised IP-OLDF. Therefore, all 15 discriminant models of LDF are inferior to those of 
Revised IP-OLDF. Maximum value is 12.94%, nevertheless Iris data is considered to satisfy Fisher’s 



6 
 

hypothesis. Swiss bank note data is linear separable data for the two variable model including (X4, 
X6). If MNMp shows MNM for p variables model, MNM(P+1) to add one variable in the model is 
always small (MNMp >= MNM(P+1)). Therefore, all 16 models including (X4, X6) are linear separable. 
Minimum value of Swiss bank note bootstrap samples (16 linear separable models) is 0.5%. Maximum 
value is 0.98%. The difference between LDF and Revised IP-OLDF is very small, because these data 
are linear separable. Minimum/maximum values of student bootstrap samples (31 models) are 
1.2/8.61%. Minimum/ maximum values of CPD bootstrap samples (19 models selected by forward 
stepwise) are 3.1/7.31%. The difference is big, because there are multi- collinearities in CPD data. 
All 81 models of LDF are inferior to those of Revised IP-OLDF. On the other hand, only 6 models of 
LDF are superior to those of Revised IP-OLDF in the case of evaluation samples. Only 2 and 9 models 
of logistic regression are superior to those of Revised IP-OLDF in the case of training and evaluation 
samples. Only 3 and 18 models of S-SVM (C=10000) are superior to those of Revised IP-OLDF in the 
case of training and evaluation samples. P 

6. Conclusion 
Revised IP-OLDF can recognize MNM=0 data correctly, and can avoid the cases on f(xi)=0. 

MNM is the lower limit of NM for the training bootstrap samples. Two models of (Logi-MNM) and 
three models of (SVM-MNM) in Table2 are negative. This result shows logistic regression and 

S-SVM can’t avoid the cases on f(xi)=0. The mean error rates of Revised IP-OLDF are better than 
LDF, logistic regression and S-SVM. 
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