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Abstract 
Survey data are generally obtained via a complex sampling design involving 

clustering, stratification and unequal sample inclusion probabilities. When the 

inclusion probabilities are correlated with the model outcomes after conditioning on 

the auxiliary variables, the sampling process is informative, and the model holding for 

the sample data is different from the model holding in the population from which the 

sample is taken. Standard estimation methods for multilevel models may provide 

severely biased estimates of the model parameters under informative sampling, 

especially when the cluster sample sizes are small, yielding to erroneous interpretation 

of the phenomenon studied. In this article, we apply a new approach for bias 

correction based on resampling procedures proposed by the same authors to correct for 

the bias of multilevel model parameter estimates under informative sampling of the 

first and second levels of the model hierarchy. The performance of the new method 

and alternative bias correction approaches proposed in the literature are assessed via 

an extensive simulation study and an application to a real data set. 
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1. Introduction 

Unweighted multilevel analysis (Goldstein, 2003) of complex survey data may lead to 

severely biased estimates (Korn and Graubard, 1995) if the inclusion probabilities are 

related to the model response variable even after conditioning on the design variables, 

known in the sampling literature as informative sampling design (Pfeffermann, 

Krieger and Rinott, 1998). Under such schemes, the model holding for the population 

values is likely to be different from the model holding for the sample data, defined as 

sample model by Pfeffermann et al. (1998a). Therefore, the sample model needs to be 

estimated from the sample data in order to perform inferential statistical analyses 

based on the sample values. 

Another important issue when fitting multilevel models to sample survey data is 

how to account for the sampling weights in multilevel analysis estimation. A large 

number of studies on how to do this have been proposed lately in the literature 

(Pfeffermann, Skinner, Holmes, Goldstein and Rabash, 1998); Korn and Graubard, 

2003; Grilli and Pratesi, 2004; Rabe-Hesketh and Skrondal, 2006). Most of them are 

based on incorporating the sampling weights in the likelihood function and 

maximising it via numerical integration since closed expression for the estimators are 

not available. Pfeffermann et al. (1998b) propose a probability weighted iterative 

generalised least squares approach (PWIGLS), which is an adaptation of the iterative 

generalised least squares (IGLS) method (Goldstein, 1986) by analogy to the pseudo 

maximum likelihood principle (Binder, 1983; Skinner, 1989; Chambers, 2003). The 

PWIGLS approach basically consists of probability weighting of first and higher level 

units with weights equal to the reciprocal of the corresponding sampling inclusion 

probabilities. However, as shown in that article, the use of this approach, although 

reducing the bias of unweighted parameter estimators very substantially, does not 

eliminate it completely, unless in large samples. 

Classical bootstrap bias corrections (Efron, 1979) involve estimating the bias of 

an estimator by apriorily choosing a function that depends only on the original and 

bootstrap estimates of the parameter of interest. In analyses that involve more than one 
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parameter, it could well be that the bias of an estimator in estimating one parameter 

may depend on the value of that parameter and on the bias in estimating the other 

parameters. Pfeffermann and Correa (2012) proposed a general approach for bias 

correction, entitled the Empirical Bootstrap Bias Correction (EBC), based on the 

bootstrap resampling procedure and on a parametric model. 

The aim of this article is to compare the performance of the EBC method to 

classical bootstrap bias corrections via an extensive Monte Carlo study. Unweighted 

(thereafter naïve) and PWIGLS estimators are assessed when fitting two-level models 

to survey data under informative sampling of first units with small sample sizes at 

both levels. 

2. The Classical Bootstrap Bias Corrections 

Efron (1979) proposed to estimate the bias by use of bootstrap samples as obtained by 

drawing units with replacement from the original sample. These resampling methods 

have become very popular in statistical inference and are applied in many diverse 

applications in order to obtain estimates of standard errors, confidence intervals, 

biases, etc. (Shao and Tu, 1995). In what follows, parametric and nonprametric 

bootstrap are reviewed along with the classical bootstrap bias corrections. 

Let nzz ,...,1  be the outcomes of independent and identically distributed 

(i.i.d.) random variables 
nZZZ ,...,, 21
 having distribution F . Denoting the observed 

data by  nzzz ,...,1 , the objective is to assess the accuracy of a statistic  zt̂  in 

estimating the unknown parameter of interest  Ft .Let 
**

1 ,..., Bzz  be B  

independent (parametric or nonparamentric) bootstrap samples and 
**

1
ˆ,...,ˆ

B  the 

corresponding bootstrap replications of the statistic ̂ , where  **ˆ
ii zt . Thus, 

measures of accuracy of the statistic of interest are inferred from the observed values 

of the bootstrap replications 
**

1
ˆ,...,ˆ

B . In particular, the bootstrap estimation of bias 

is straightforward, as shown in Efron and Tibshirani (1986) and described as folows. 

The bias of the statistic  zt̂  in estimating the true value  Ft  is 

      FtztEbiasbias FFF   ,ˆ       (1) 

where  FE  is the expectation under the distribution F . Replacing F  by the 

estimated distribution F̂  in equation (1), we find the bootstrap estimate of bias: 

    FtztEbias
FF

ˆ*

ˆˆ  .       (2) 

In practice,     *
ˆ

*

ˆ 
FF

EztE   is approximated by averaging 
**

1
ˆ,...,ˆ

B  over a large 

number B of bootstrap replications yielding  

 Ftiasb B
ˆˆˆ *          (3) 

where 



B

b

bB
1

*1* ˆˆ  . As B tends to infinity, Bbias  tends to 
F

bias ˆ  (Efron and 

Tibshirani, 1986). 

Once an estimate of the bias is available, one can correct the original estimate by 

subtracting the estimated bias from it. Hence, the bootstrap bias-corrected estimate of 

the parameter of interest  , also known as additive correction, is given by 

   ** ˆˆ2ˆˆˆˆˆˆ   Ftiasb B

BC .    (4) 

Similarly, the multiplicative bias correction (Hall and Maiti, 2006) is given by 
*2 ˆ/ˆˆ  BC
. 

3. The Empirical Bootstrap Bias Correction Approach 

The main idea of the EBC approach (Pfeffermann and Correa, 2012) is to use data 

generated under an assumed model and a plausible parameter space to identify the 

relationship between the true parameter value and its estimates from the original and 



bootstrap samples. Hence, the functional relationship between the error of the 

estimator under study and its original and bootstrap estimates is extracted from the 

data themselves, rather than arbitrarily chosen. Besides, not only original and 

bootstrap estimates of the target parameter are included in that relationship but 

corresponding estimates of other model parameters can possibly be included in the 

function as well. To allow for the fact that the bias may depend on the true value of the 

parameter, the procedure explicitly takes into account a set of plausible parameter 

values in the process of identification of the function. The EBC approach has two 

main advantages. The first one is that it provides not only a bias-corrected estimator of 

the target parameter but also the bootstrap distribution of the bias-corrected estimator, 

allowing estimation of its measures of accuracy. The second advantage is that the EBC 

approach is not restricted to a particular bias correction formula, permitting to express 

the bias of the target estimator as a function of the biases of other estimators involved 

in the analysis. 

The EBC method generates a set of plausible parameter values 

Gg ψψψ ,...,,...,1  based on the original sample estimate and, for each of those, 

generates one pseudo original sample from );( gf ψz . Bootstrap samples are then 

generated from this pseudo original sample. As a result, each plausible parameter 

value generates one pseudo original estimate and corresponding bootstrap estimates. A 

mathematical relationship for the bias of the estimator under study can then be 

identified. A bias-corrected estimator for the target parameter is obtained by applying 

this function to the original and bootstrap estimates obtained from the original sample. 

Assume that the original sample yields original and bootstrap estimates, ψ̂  and 
*ψ̂ , 

of the parameter ψ . A single component of the vector of parameters ),...,( 1 Kψ , 

say 1 , is assumed to be the target for bias-corrected estimation. The approach is 

applied to the other model parameters in an identical manner. See Pfeffermann and 

Correa (2012) for a detailed description of the method. 

4. Bias Corrections of Unweighted and PWIGLS Estimators of a Two-level model 

Under an Informative Sampling Design 

In this section, the EBC approach is applied in order to reduce the bias of unweighted 

and PWIGLS (Pfeffermann et al., 1998b) estimators of two-level model parameters 

under an informative sampling scheme with small sample sizes of the upper level 

units. The study is based on simulated data adopting the same sampling scheme 

considered by Pfeffermann et al. (1998b) and under which the PWIGLS estimators 

showed large biases. 

4.1. Population Model, Sampling Design and Estimation of Sample Models 

Consider the following two-level random intercept model (denoted  ): 

ijjjijy  | , 
jNi ,...,1  (level 1 model) 

jj u  , Mj ,...,1  (level 2 model),     (5) 

where  
ju  and 

ij  are independent random errors such that  2
...

,0~ u

dii

j Nu  , 

 2
...

,0~  N
dii

ij
. Let t

u ),,( 22  ψ  be the vector of population parameters. 

Consider a two-stage disproportional stratified clustered sampling design with 

informative sampling only at level 1 (elementary units). At the first stage, m  level 2 

units are selected by a probability proportional to size without replacement design. 

The measures of size are the level 2 sizes jN , which are assumed to be uncorrelated 

with the random intercepts j , such that the sampling design is noninformative at 

level 2. At the second stage, level 1 units in selected level 2 unit j  are partitioned into 

2 strata according to whether 0ij  or 0ij  and simple random sampling without 



replacement of sizes 1.jn  and 2.jn  (assuming 2.1. jj nn  ) are drawn from stratum 1 

and 2 of level 2 unit j , respectively. In this case, the first level inclusion probability is 

related to the level 1 random error ij  and, consequently, to the outcome ijy , featuring 

an informative sampling design at level 1. The sample distribution (Pfeffermann, 

Krieger and Rinott, 1998) for the level 1 measurements ijy  given the random intercept 

j  and inclusion in the sample is 

   
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Since the sampling design is noninformative at level 2, the sample distribution for the 

level 2 measurements j  given inclusion in the sample is the same as the distribution 

of j  in the population, i.e.,     ),;(,|| 2

ujjjs sjff   ψψ .        (7) 

 

4.2. Monte Carlo Study 
In this section, the performance of the EBC approach is assessed via a Monte Carlo 

study for the population model, sampling scheme and sample model described in the 

previous section. The experiment mimics the simulation study performed by 

Pfeffermann et al. (1998b) with an additional step for adjusting the bias of unweighted 

and PWIGLS estimators by applying the EBC approach. The scaled 2 PWIGLS 

estimators proposed by Pfeffermann et al. (1998b) is adopted in this study. 

Let 
t

u )ˆ,ˆ,ˆ(ˆ 22  ψ  and 
t

u )ˆ,ˆ,ˆ(ˆ ,*2,*2**  ψ  be the respective vectors of 

original estimates and bootstrap means of the vector of population parameters 
t

u ),,( 22  ψ . The experiment involves generating populations from the model in 

(11) with parameters 1 , 2.02 u , 5.02   and 300M  second level units. 

The second level sizes jN  were determined by  
jj uN ~exp75 , where 

 2,0~~
uj Nu   truncated below by u5.1  and above by u5.1 . The values of jN  

lie in the interval [38;147] with average around 80. The sample size at the first stage is 

35m  level 2 units. At the second stage, simple random samples of level 1 units of 

sizes 21. jn  and 72. jn  are drawn from strata 1 and 2, respectively. Therefore, the 

total sample sizes jn  are fixed ( 9jn ) for all level 2 units j . 

Generation of bootstrap samples from the original and the pseudo original samples is 

carried out by both parametric and nonparametric bootstrap. The latter involves 

selecting the second level units by a simple random sampling design, with all the first 

level units (individual level) from the sampled level 2 units being included in the 

sample. The sampling weights used in the replicated values (bootstrap samples) are 

identical to the original sampling weights. For simplicity, generation of the plausible 

parameter values was performed from a uniform distribution between two boundaries 

determined by the original estimates and their corresponding standard errors. 

The experiment consists in replicating the steps of the EBC approach a large 

number of times in order to assess the bias and mean squared error of the EBC 

estimators. The method is described below for the PWIGLS estimator 
pw

ψ̂ , with an 



identical process applied to the naïve estimator 
naive

ψ̂ . The process was repeated 

100R  times. The number of plausible parameter values 400G  was chosen in 

order to allow a reasonable number of parameter values for estimation (350 values) 

and validation (50 values) of the candidate bias correction functions. The classical 

additive and multiplicative bootstrap bias corrections are special case of the functions 

in equations (8) and (9) below respectively, taking 11 a  and 0320  aaa . 
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4.3. Results 

Table 1 shows summary statistics for the naïve, PWIGLS and respective bias-

corrected estimators for parameter 2

u  under the classical corrections and the EBC 

approach. Results are reported for nonparametric bootstrap only. Similar conclusions 

are valid for the parametric case and for the other model parameters:   and 2

 . The 

number of original samples considered for naïve and PWIGLS estimators is 72R  

and 95R , respectively. 

Let r̂  denote an estimator (naïve, PWIGLS, EBC or classical bias-corrected 

estimator) of the parameter   (known in the simulation study) for the original sample 

.,...,1 Rr   The following summary statistics were computed for r̂ : simulation 

mean (Mean):  


R

r rR
1

1 ˆˆ  ; simulation standard deviation (SD): 

 

 
R

r rR
1

21 )ˆˆ()1(  ; empirical bias (Bias):  

 
R

r rR
1

1 )ˆ(  ; empirical relative bias 

(RB):  

 R

r

rR
1

1 )
ˆ

(


 and empirical root mean squared error (RMSEemp): 

 

 
R

r rR
1

21 )ˆ(  . 

Table 1: Naïve and PWIGLS estimators. Nonparametric bootstrap. True value 2.02 u . 

Estimator Mean SD Bias RB RMSE
emp 

naive,2ˆ
  0.169 0.046 -0.031 15% 0.055 

Additive Correction 0.165 0.049 -0.035 17% 0.060 

Multiplicative 

Correction 
0.165 0.049 -0.035 17% 0.060 

EBC 0.187 0.071 -0.013 6% 0.071 

pw

u

,2̂  0.158 0.052 -0.042 -20% 0.065 

Additive Correction 0.165 0.054 -0.035 -15% 0.064 

Multiplicative 

Correction 
0.165 0.054 -0.035 -15% 0.064 

EBC 0.196 0.051 -0.004 -2% 0.050 

As anticipated, the naïve and PWIGLS estimators based on the original 

sample are highly biased in the present scenario. The EBC bias-corrected estimators 

show very good performance for all model parameters, including the variance 

component estimators, which are expected to be most problematic to estimate due to 

their high sensitivity to small sample sizes. Classical bias corrections, however, 

perform poorly with small or no reduction in the biases. 

It is worth emphasising that the bias-corrected PWIGLS estimators obtained 

by the EBC approach perform well even in the case where the non-corrected estimator 

is practically unbiased, which is a desirable characteristic of a bias correction 

procedure. This is the case of the PWIGLS estimator of the intercept   (Pfeffermann 

et al., 1998b). In addition, the trade-off bias-variance does not seem to be an issue for 



the EBC bias-corrected estimators, since the mean squared errors (RMSEemp) show 

minimum increase or even reduction when compared to the non-corrected estimators. 

5. Conclusions and Remarks 

In this article the extended bootstrap bias correction (EBC) approach was 

applied to bias adjustment of unweighted and PWIGLS estimators of linear two level 

model parameters under informative sampling of level 1 units with small sample sizes 

at both levels. The EBC procedure was assessed by Monte Carlo study, evaluating the 

behaviour of the EBC estimators through mean squared errors and biases estimates. 

The main finding of this article is that the EBC approach performs very well 

for all the scenarios considered (naïve and PWIGLS estimators under nonparametric 

bootstrap). A range of factors can be changed to improve the EBC approach proposed 

in this article. First, the best function can be chosen such that the estimated MSE (not 

the bias) of the EBC estimator is minimum. See Pfeffermann and Correa (2012). 

Another issue to be explored is the generation of the parameter values. Adopting wider 

intervals and distributions other than the uniform is an important issue to be 

considered. The results presented in this paper are preliminary. An application of the 

EBC approach to a real survey data is in progress. 
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