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Abstract

Multi-level models provide a convenient framework for analyzing data from survey sam-
ples with hierarchical structures. Inferential procedures that take account of survey design
features are well established for single-level (or marginal) models. On the other hand,
available methods that are valid for genera multi-level models are somewhat limited. This
paper presents a unified method for two-level models, based on a weighted composite like-
lihood approach, that takes account of design features and provides valid inferences even
for small sample sizes within level 2 units. The proposed method has broad applicability
and is straightforward to implement. Empirical studies reported have demonstrated that the
method performs well in estimating the model parameters. Moreover, this research has im-
portant implication: It provides a particular scenario to showcase the unique merit of the
composite likelihood method for which the likelihood method would not work.
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1 Introduction

Multi-level models provide a flexible framework to include auxiliary variables related to
survey design features. When carrying out inference about the model parameters, it is
important to accommodate sampling characteristics, such as stratification, clustering, and
unequal selection probabilities; otherwise, misleading or erroneous results may result. In
the case of single-level models, incorporating selection probabilities into inference proce-
dures has been well studied by many authors, including Binder (1983) and Skinner (1989).
Although there are some important contributions on multi-level models for survey data (Pf-
effermann et al., 1998; Stapleton, 2002; Kovacevic and Rai,2003; Grilli and Pratesi, 2004;
Pfeffermann et al., 2006; Asparouhov, 2006; Rabe-Hesketh and Skrondal, 2006; Rao et al.,
2010), research in this area remains relatively unexplored.

In this paper, we address this important problem by exploring a unified inferential proce-
dure for multi-level models featuring survey data with sampling probabilities incorporated.
Our approach is based on the composite likelihood formulation (Lindsay, 1988; Lindsay
et al., 2011). Rao et al. (2010) introduced weighted log pairwise likelihood that can handle
general multi-level methods and empirically studied the performance of the method for a



simple normal two-level model. Our paper provides extensions of the Rao et al. (2010)
method.

2 Notation and Framework

We consider the case of a finite population having a two-levelstructure. LetN be the
number of level 2 units in the population andMi be the number of level 1 units in the level
2 unit i, so that the total number of units in the population isM =

∑N
i=1 Mi. Let Yij be

the response variable for subjectj in clusteri, andxij be the associated covariate vector,
i = 1, ..., N , andj = 1, ...,Mi. Correspondingly, the super-population model from which
this finite population is generated is assumed to match the design two-level structure. We
assume that given clusteri and random effectsui, Yij are assumed to be independently
distributed as

Yij ∼ fy|u(yij|xij ,ui;θy), j = 1, ...,Mi (1)

wherefy|u is a known density function andθy is the associated parameter vector. In the
second step we further model random effects by assuming that

ui has a density functionfu (2)

wherefu often has a given parametric form that is indexed by the parameterθu. This model
formulation covers both linear two-level models (i.e., linear mixed models) and generalized
linear two-level models (generalized linear mixed models). With informative sampling of
clusters and of elements within sampled clusters, the population model above may not hold
for the sample. In that case, standard methods for multi-level models that ignore the design
and assume model (1) with (2) holds for the sample can lead to asymptotically biased es-
timators of model parametersθy andθu (Pfeffermann et al., 1998). To address this issue,
properly incorporating the sampling information into the inference becomes critical. In the
next section, we tackle this problem using the weighted composite likelihood framework in
order to attain both validity and robustness of results.

3 Estimation based on Composite Likelihood

LetLij = f(yij|xij) be the density ofYij, determined by

Lij =

∫
fy|u(yij|xij ,ui)fu(ui)dui.

For j 6= k, letLijk = f(yij, yik|xi) be the joint density for paired responses(Yij , Yik), and
this is determined by

Lijk =

∫
fy|u(yij |xij ,ui)fy|u(yik|xik,ui)fu(ui)dui

Let ℓij = logLij , andℓijk = logLijk.
A “census” composite likelihood can be formulated based on the marginal pairwise

distributions (Lindsay et al., 2011):

C(θ) =
N∏

i=1

∏

j<k

Lijk.



A “census” log pairwise likelihood under the assumed two-level model given by (1) and
(2) is obtained as

ℓc(θ) =

N∑

i=1

∑

1≤j<k≤Mi

ℓijk.

Using the within-cluster joint inclusion probabilities,πjk|i, we obtain a weighted “sample”
log all-pairwise likelihood

ℓwc(θ) =
∑

i∈s

wi

∑

j<k,j,k∈s(i)

wjk|iℓijk, (3)

wherewjk|i = π−1
jk|i. Then solving

Uwc(θ) =
∂ℓwc(θ)

∂θ
=

∑

i∈s

wiUiwc(θ) = 0 (4)

for θ leads to the weighted composite likelihood estimator,θ̂w, of θ, whereUiwc(θ) =∑
j<k,j,k∈s(i)wjk|isijk, andsijk = ∂ℓijk/∂θ.
One notices from (3) and (4) that to implement the proposed method, we need the

within-cluster joint inclusion probabilitiesπjk|i = w−1
jk|i, in addition to the inclusion prob-

abilities πi = w−1
i . This information is often available in many settings, suchas simple

random or stratified random sampling within clusters, or when the within cluster sampling
fraction is small. If such information is not available, onemay employ an approximation
to πjk|i. When sampling within clusters is based on unequal probability sampling, then
approximations toπjk|i depending only on the marginal inclusion probabilitiesπj|i can be
utilized; see Haziza et al. (2008) for details.

Now we explain thatEξEd{Uwc(θ)} = 0. By the nature of the two-stage design
weightswj|i andwi, it is seen that the inner expectationEd{Uwc(θ)} recovers the cen-
sus composite score function,Uc(θ) = (∂/∂θ){ℓc(θ)}. Then the unbiasedness of the latter
function ensures zero expectation of the weighted composite score function taken with re-
spect to the design and the model. As a result, the weighted composite likelihood estimator
θ̂w is consistent from both the design and model perspectives. In particular,θ̂w is design-
model consistent forθ as the numbern of level 2 units in the sample approaches∞, even
when the within-cluster sizes,mi, are small.

4 Variance Estimation

The covariance matrix of the estimatorθ̂w is given by

covξd(θ̂w) = covξ{Ed(θ̂w)}+Eξ{covd(θ̂w)}.

Let θU = Ed(θ̂w), thenθU can be viewed as a finite population (or census) quantity
which is unbiasedly estimated by the estimatorθ̂w. As discussed by Demnati and Rao
(2010) and Carrillo et al. (2010), ifcovξ(θU ) has the order of1/N and the sampling fraction
n/N is small, then we can approximatecovξd(θ̂w) by the termEξ{covd(θ̂w)}. That is,

covξd(θ̂w) ≈ Eξ{covd(θ̂w)}, (5)



and this suggests that an estimator ofcovd(θ̂w) can be approximately taken as a design-
model based estimator of the covariance matrixcovξd(θ̂w).

The design-based covariancecovd(θ̂w) can be estimated using the Taylor series expan-
sion that is similar to Binder (1983). That is, we use the approximation:

covd(θ̂w) ≈ {Γc(θN )}−1covd{Uwc(θN )}{Γc(θN )}−1T. (6)

A precise evaluation of (6) is generally difficult as it requires fourth order within-cluster
inclusion probabilities. We therefore follow the customary practice of treating the sample
clusters as if they were selected with replacement with probabilities pi, wherepi is a size
measure andπi = npi. For example, the Rao-Sampford method of unequal probability
sampling ensures thatπi = npi (Rao, 1965; Sampford, 1967). As a result, we can write

Uwc(θ) = n−1
∑

i∈s

Ũiwc(θ)

whereŨiwc(θ) = Uiwc(θ)/pi are independent with the same mean and the same variance
from the design perspective, andUiwc(θ) =

∑
j<k,j,k∈s(i)wjk|isijk(θ). Consequently, we

estimate the covariance matrix ofUwc(θN ) as

ĉovd{Uwc(θN )} = {n(n− 1)}−1
∑

i∈s

{Ũiwc −Uwc}{Ũiwc −Uwc}
T

evaluated at the estimatorθ̂w. AsUwc(θ̂w) is zero, we then obtain

ĉovd{Uwc(θN )} =
n

(n− 1)

∑

i∈s

w2
iUiwcU

T
iwc (7)

wherewi = 1/πi andUiwc = Uiwc(θ̂w). We will use (7) as an approximate estimator of
the covariance matrixcovξd(θ̂w). This approximation should perform well if the level 2
sampling fractionn/N is small; otherwise it will lead to overestimation bias.

It now follows from (5), (6) and (7) that an approximate estimator ofcovξd(θ̂w) is given
by

ĉovξd(θ̂w) = {Γwc(θ̂w)}
−1ĉovd{Uwc(θN )}{Γwc(θ̂w)}

−1T.
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