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Abstract

Multi-level models provide a convenient framework for aizahg data from survey sam-
ples with hierarchical structures. Inferential procedui®at take account of survey design
features are well established for single-level (or matdyinzodels. On the other hand,
available methods that are valid for genera multi-level etedre somewhat limited. This
paper presents a unified method for two-level models, basedvweighted composite like-
lihood approach, that takes account of design features andes valid inferences even
for small sample sizes within level 2 units. The proposedhogthas broad applicability
and is straightforward to implement. Empirical studiesonégd have demonstrated that the
method performs well in estimating the model parametersieleer, this research has im-
portant implication: It provides a particular scenario kmwcase the unique merit of the
composite likelihood method for which the likelihood medheould not work.

Key words. Composite likelihood; Complex sampling design; Desigisddl inference;
Multi-level model; Super-population model; Variance ewttion.

1 Introduction

Multi-level models provide a flexible framework to includexdiary variables related to
survey design features. When carrying out inference ablmuiniodel parameters, it is
important to accommodate sampling characteristics, ssdtratification, clustering, and
unequal selection probabilities; otherwise, misleadingrooneous results may result. In
the case of single-level models, incorporating selectiarbabilities into inference proce-
dures has been well studied by many authors, including Bii883) and Skinner (1989).
Although there are some important contributions on melel models for survey data (Pf-
effermann et al., 1998; Stapleton, 2002; Kovacevic and Z413; Grilli and Pratesi, 2004;
Pfeffermann et al., 2006; Asparouhov, 2006; Rabe-HeskadlSkrondal, 2006; Rao et al.,
2010), research in this area remains relatively unexplored

In this paper, we address this important problem by expigianified inferential proce-
dure for multi-level models featuring survey data with séingpprobabilities incorporated.
Our approach is based on the composite likelihood formarafLindsay, 1988; Lindsay
et al., 2011). Rao et al. (2010) introduced weighted logwiae likelihood that can handle
general multi-level methods and empirically studied thégremance of the method for a



simple normal two-level model. Our paper provides extersiof the Rao et al. (2010)
method.

2 Notation and Framework

We consider the case of a finite population having a two-lstelcture. LetN be the
number of level 2 units in the population and; be the number of level 1 units in the level
2 unit, so that the total number of units in the populationis= S M;. Let Y;; be
the response variable for subjecin clusteri, andx;; be the associated covariate vector,
i=1,...,N,andj = 1,..., M;. Correspondingly, the super-population model from which
this finite population is generated is assumed to match thignléwo-level structure. We
assume that given clusterand random effects;, Y;; are assumed to be independently
distributed as

Yij ~ fyu(ijlxij, 0i; 0y), j=1,....,M; 1)

where f,|, is a known density function andl, is the associated parameter vector. In the
second step we further model random effects by assuming that

u; has a density functior, (2)

wheref, often has a given parametric form that is indexed by the patanél,,. This model
formulation covers both linear two-level models (i.e.elm mixed models) and generalized
linear two-level models (generalized linear mixed modeW)th informative sampling of
clusters and of elements within sampled clusters, the ptipnlmodel above may not hold
for the sample. In that case, standard methods for mukdtiemdels that ignore the design
and assume model (1) with (2) holds for the sample can leadyimatotically biased es-
timators of model parameteés, and@,, (Pfeffermann et al., 1998). To address this issue,
properly incorporating the sampling information into théerence becomes critical. In the
next section, we tackle this problem using the weighted asitg likelihood framework in
order to attain both validity and robustness of results.

3 Estimation based on Composite Likelihood
Let L;; = f(yi;|xi;) be the density oF;;, determined by
Lij = /fyu(yz’j|xij>uz‘)fu(ui)dui-

Forj # k, let Liji = f(vij, vir|x:) be the joint density for paired respons@$;, Y;;), and
this is determined by

Lijn = / By i %0 02) Fy (i ik ) o (115

Let &'j = log Lij: andE,-jk = log Lijkz-
A “census” composite likelihood can be formulated basedt@nrarginal pairwise
distributions (Lindsay et al., 2011):

N
@) =T II Lisw

i=1j<k



A “census” log pairwise likelihood under the assumed tweelenodel given by (1) and

(2) is obtained as
N
= Z Z lijk-

i=1 1<j<k<M;

Using the within-cluster joint inclusion probabilities;;;, we obtain a weighted “sample”
log all-pairwise likelihood

0)=> wi > winilijk 3)
i€s  j<kjkes(i)

wherew;; = 7,

Jklz Then solving

Uwc(o) aewc Z w; U zwc =0 (4)

€S

for 6 leads to the weighted composite likelihood estimaﬁ:&r, of 8, whereU;,,.(0) =
2 j<k.jkes(i) WikliSijk, @Ndsijk, = Olijp,/ 0.

One notices from (3) and (4) that to implement the proposethode we need the
within-cluster joint inclusion probabilities ;;; = wj_k1|z in addition to the inclusion prob-
abilities m; = wi‘l. This information is often available in many settings, sashsimple
random or stratified random sampling within clusters, or nvtie within cluster sampling
fraction is small. If such information is not available, omay employ an approximation
to 7k, When sampling within clusters is based on unequal probalsiémpling, then
approximations tor;,,; depending only on the marginal inclusion probabilitieg can be
utilized; see Haziza et al. (2008) for details.

Now we explain thatFs Eq{U,.(6)} = 0. By the nature of the two-stage design
weightsw;;; andw;, it is seen that the inner expectatidfy{U,.(8)} recovers the cen-
sus composite score functidli,(6) = (0/00){¢.(6)}. Then the unbiasedness of the latter
function ensures zero expectation of the weighted compasitre function taken with re-
spect to the design and the model. As a result, the weightegasite likelihood estimator
0 is consistent from both the design and model perspectlvesantlculare is design-
model consistent foé as the numbenr of level 2 units in the sample approaches even
when the within-cluster sizes,;, are small.

4 Variance Estimation
The covariance matrix of the estima@g; is given by

cov§d(§ ) = cov5{Ed( w)}+ E&{COVd( w)}-

LetOy = Ed(éw), thendy can be viewed as a finite population (or census) quantity
which is unbiasedly estimated by the estimaflgr. As discussed by Demnati and Rao
(2010) and Carrillo et al. (2010), ébv¢ (0y7) has the order of /N and the sampling fraction

n/N is small, then we can approximatevw(@w) by the termEg{covd(éw)}. That is,

COV&d(aw) [ E&{COVd(aw)}, (5)



and this suggests that an estimatorcm‘rd(aw) can be approximately taken as a design-
model based estimator of the covariance matmiwgd(aw).

The design-based covariarmwd(ﬁw) can be estimated using the Taylor series expan-
sion that is similar to Binder (1983). That is, we use the apipnation:

cova(Bu) & {Te(Ox)} " cova{ Une(On) HTc(On)} 1. (6)

A precise evaluation of (6) is generally difficult as it regps fourth order within-cluster
inclusion probabilities. We therefore follow the custogngractice of treating the sample
clusters as if they were selected with replacement with gdvdities p;, wherep; is a size
measure and; = np;. For example, the Rao-Sampford method of unequal probabili
sampling ensures that = np; (Rao, 1965; Sampford, 1967). As a result, we can write

0)=n""> Uin(0)

€5

wherefjiwc(a) = U,wc(0)/p; are independent with the same mean and the same variance
from the design pe_rspective, ghﬂwc(e) = Zj<k,j7k68(i) w;Sijx(0). Consequently, we
estimate the covariance matrix of,,.(6 ) as

C/(Wd{Uwc(eN)} = {TL(TL - 1)}_1 Z{ﬁiwc - Uwc}{ﬁiwc - Uwc}T

1€ES
evaluated at the estimatE(U. As Uwc(aw) is zero, we then obtain

COVd{Uwc(gN 2.U-ZUJC.U-;rwc (7)

€5

wherew; = 1/m; andUj,. = inc(éw). We will use (7) as an approximate estimator of
the covariance matrixov¢,(6,,). This approximation should perform well if the level 2
sampling fractiom /N is small; otherwise it will lead to overestimation bias.
It now follows from (5), (6) and (7) that an approximate esttor ofcov¢q(6.,) is given
by
coved(Ouw) = {Twc(0 w)}_1@d{UwC(0N)}{chww)}_h-
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