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Abstract

To find biosignatures of treatment response, clinicians are interested in iden-
tifying patient features at baseline that predict differential response to dif-
ferent treatment. The treatments could be drug and placebo, or different
drugs. These differential predictors may be termed “moderators of treat-
ment effect”, because the differences between the efficacies of the treatments
depend on the levels of those predictors. It is common in clinical research
to model the outcome as a linear function of the predictor and to test for
significance of the interaction between treatment and the predictors in or-
der to find moderators of treatment effect. Also, typically, moderators are
identified either one by one, using one model for each potential predictor,
or from a large model which includes all potential predictors and their 2-
way interactions with treatment, but not interactions between the potential
predictors. However, neither of these modeling strategies aids in the determi-
nation of combinations of patient characteristics that could be used to select
patients who have high probability to respond to a given drug. In this talk
we present flexible methods that extend the existing approaches for iden-
tification of differential predictors of treatment response in two directions:
(1) allowing for non-linear association of the potential predictors with the
outcome and (2) identifying combinations of predictors that are the “best”
moderators of treatment effect, i.e. offer the largest differences between the
efficacies of the treatments as a function of the combination.

1 Introduction

Directly relevant to clinical practice and personalized medicine would be
the ability, at the time a patient presents for treatment, to make predictions
about the extent of a patient’s likelihood to improve due to nonspecific effects
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of treatment. Baseline variables that differentially predict outcomes from
drug and placebo treatments point the way to understanding the mechanisms
of response to treatment and shed light on the possible pathways of the
disease and its cure. The standard approach for finding such differential
predictors is based on linear models that test for significance of the interaction
between a baseline variable and the treatment indicators (Kraemer et al.,
2002). Let Y denote the outcome (e.g., symptom severity) and let T be an
indicator for treatment (e.g., T = 0 for placebo and T = 1 for drug). To
determine whether a scalar predictor X differentially predicts outcome in the
two treatment groups, the typical moderator analysis tests for significance of
the interaction term β3 in the following model:

E(Y |T,X) = β0 + β1T + β2X + β3TX. (1)

Here we extend this model to increase its utility for identifying biosignatures
for treatment response.

2 Linear models, combinations of predictors

2.1 General idea

Let X = (X1, . . . , Xp)′ denote p predictors representing possible moderators
of response; without loss of generality they can be considered standardized.
The goal is to find an optimal linear combination α′X for some vector α
that maximizes the magnitude of the interaction term β3 in the model

Y = β0 + β1T + β2(α′X) + β3T (α′X) + ε. (2)
Finding such a linear combination α′X will then define a biosignature (or
moderator) for placebo response that incorporates all of the important pre-
dictors (some coefficients in α may be zero or near zero).

Let Ψx denote the covariance matrix for X with eigen-decomposition
HDH ′, where H is orthogonal and D is a diagonal matrix of eigenvalues.
If Yd and Yp denote the outcomes for the drug and placebo arms and Ψxyd

and
Ψxyp are the vector of covariances between the response and the p-predictors
in each arm, then the squared interaction effect when a principal component
regression is performed can be expressed as α′Aα, where

A = D−1/2H ′(Ψxy1 −Ψxy2)(Ψxy1 −Ψxy2)
′HD−1/2. (3)

Thus, the interaction effect is maximized by setting α∗ equal to the eigenvec-
tor associated with the positive eigenvalue of A. Consequently, the optimal
linear combination that maximizes the interaction term for the original vari-
ables is α′X = α∗′D−1/2H ′X. This method can be readily extended to
more than two treatments and is very fast making it possible to use resam-
pling techniques for inference.

2.2 Example

A study for the treatment of Post Traumatic Stress Disorder (PTSD)
compared three psychotherapies for treating the condition: two different
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Figure 1: Post Traumatic Stress Disorder: Change in outcome (CAPS) from
immediate post treatment to follow up.

treatment approaches and a combination of the two, (Cloitre et al., 2010).
Efficacy was measured with the Clinician Administered PTSD Scale (CAPS)
and patients were assessed at treatment end and at two follow up times. All
interventions were efficacious in reducing PTSD symptoms immediately post-
treatment. A question of clinical importance is whether different treatments
worked better for different types of patients in terms of reducing symptoms
and maintaining improvement during follow up. Six candidate baseline char-
acteristics were identified as potential moderators but none of them produced
significant moderating interactions in model (1) when modeling the change
in outcome from immediate post-treatment to end of follow up (the small-
est p-value for a treatment-by-covariate interaction term was 0.085 and all
others were above 0.50). Applying the method in Section 2.1 produced a
clinically meaningful linear combination (i.e., biosignature) of the predictors
producing a statistically significant interaction term (p = 0.029) and a plot
of the improvement in CAPS during follow up versus this biosignature is
shown on Figure 1 here for each of the three treatments. The plot shows
that the maintenance of post-treatment gains for subjects in the 1st treat-
ment did not depend on the value of the estimated biosignature (i.e., α̂′x)
and everyone had a small improvement; subjects in the 3rd treatment with
low values of the biosignature had serious worsening and those with high
values had a meaningful improvement; for subjects in the 2nd treatment, as
the estimated biosignature varies from small to large, there was a small loss
of post-treatment gains.



3 Generalized Additive Models

A linear model such as (1) is inadequate if the true relationship between
a biosignature and an outcome is nonlinear. The flexibility needed can be
gained by generalizing the traditional moderator analysis using nonparamet-
ric approaches such as generalized additive models (GAM) (e.g. Hastie and
Tibshirani, 1990; Wood, 2006).

3.1 Generalizing the concept of moderator of treatment ef-
fect

If X1, . . . , Xp denote baseline predictors, then the standard GAM is

E[Y |X1, . . . , Xp] = β0 +
p∑

j=1

fj(Xj), (4)

where fj are smooth nonparametric functions. Returning to the problem of
moderator analysis, (1) can be written as

E(Y |T,X) = β0 + β1T + β2X + β3TX = β0 + β1T + f(X) + Tg(X), (5)

which is similar to a generalized additive model with a “treatment by curve”
interaction (Coull et al., 2001) with f(X) = β2X and g(X) = β3X. To allow
flexibility for discovering interesting moderating effects, the GAM methodol-
ogy will be implemented whereby f and the interaction curve g are estimated
as smooth nonparametric functions. To search simultaneously for several dif-
ferential predictors for placebo response, (4) can be augmented to

E[Y |T,X1, . . . , Xp] = β0 + β1T +
p∑

j=1

fj(Xj) +
p∑

j=1

Tgj(Xj). (6)

The significance of interaction terms in the additive model can be tested
by comparing models with and without interaction terms via a deviance test.
In addition to significance tests, we need to quantify potential moderators by
measuring the relative strength of the interaction terms gj(Xj) that measure
the deviation from fj(Xj) continuously over the range of Xj . A natural
metric for this is

E[{gj(Xj)}2] =
∫

(gj(x))2dµj(x), (7)

where we assume theXj ’s are standardized and the integration is with respect
to the distribution Xj .

3.2 Example

The effect of age on response to different antidepressant medications has been
investigated in many studies and the contradictory reports are testament
to the complex relationship of age and treatment outcome. We studied the
effect of age on response to fluoxetine using data from 10 randomized placebo
controlled clinical trials; all had similar designs and collected similar data.
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Figure 2: Loess curves of improvement on vs. Age across 10 studies

The outcome Y was improvement in symptoms from baseline to the study
end, as measured by the Hamilton Depression Rating Scale (HDRS), and
X was subject’s age. Figure 2 shows smooth nonparametric loess curves of
improvement versus age for drug and placebo treated subjects along with 100
bootstrap curve estimates to indicate the degree of variability in the fitted
curves. Simple inspection indicates that improvement depends on age in a
nonlinear way in both arms and that the relationship of improvement with
age is different for the two treatments. Here nonlinear flexibility is needed
to discover this apparent moderating effect of age.

4 Conclusion

The presentation will discuss details of the algorithms for fitting those flexible
models for identification of biosignatures, also called moderators of treatment
effect. More examples will be shown as well as directions of future research.
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