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Abstract

This paper proposes a Bayesian model for secondary structure prediction given the primary
structure. The method considers the packing influence of residues on secondary structure
determination, including those packed close in space but distant in sequence. This model-
ing allows insights into the rules governing packing, filling a substantial gap in the current
understanding of protein structure.
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1 Introduction
Advances in genomic sequencing technologies have made obtaining the primary struc-

ture (the linear sequence of amino acid) of a protein relatively cheap, accurate, and fast. For
protein sequences of unknown biological function and/or structure, one standard and quite
insightful analysis is a prediction of the protein sequences secondary structure. Current sec-
ondary prediction methods are based solely on similarity to sequences with known structure
yet produce a prediction accuracy of around 80% (Rost 2001). To improve upon this accu-
racy, this paper develops a secondary structure prediction method that considers higher order
information about the structure of protein residue packing provided by the knob-socket mo-
tif (Joo et al. 2012). A novel representation of packing structure is used where information
about a residues secondary structure state is gained not only from local sequence but also
from residues packed distant in sequence. The overall modeling allows insights into how
packing governs secondary structure, filling a substantial gap in the current understanding
of protein structure.

2 Proposed Model
2.1 Notation
Consider a protein whose primary structure is its observed amino acid sequence a = (a1,
. . . , ak), where ai is a one-letter code denoting one of the 20 proteinogenic amino acids
and k is the protein length. The secondary structure of a protein is the general form of its
local segments, which we refer to as “block types.” Kabsch and Sander (1983) proposed
the Dictionary of Protein Secondary Structure (DSSP) for protein secondary structure with
single letter codes. We consider the following 4 block types (in italics) from the original 8
structures defined in DSSP (in parentheses): 1. Helix “H”: 310 helices (G), α-helices (H),
or π-helices (I), 2. Strand “E”: extended strands in parallel and/or anti-parallel β-sheets (E),
3. Turn “T ”: hydrogen bonded turns of length 3, 4, or 5 amino acids (T), and 4. Coil “C”:
β-bridge residues (B), bends (S), or random coils (C). Let S = {H,E, T,C} denote the set
of block types.
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We introduce two equivalent parameterizations of the secondary structure. The lin-
ear sequence notation encodes the secondary structure using a vector ρ = (ρ1, . . . , ρk),
where ρi ∈ S , indicating the secondary structure at each of the k positions. Equiva-
lently, the secondary structure can be encoded in block notation using a vector (η,λ) =
((η1, λ1), . . . , (ηm, λm)), where ηj ∈ S gives the secondary structures form repeated con-
secutively λj times in the jth block. Note that λj ∈ {1, . . . , k} and

∑m
j=1 λj = k. For

example, the following are equivalent secondary structures:

ρ = (H,H,H,H,H, T, T, T,H,H,H,H,H) ⇐⇒ (η,λ) = ((H, 5), (T, 3), (H, 5))

2.2 Sampling Model
We start by considering the joint distribution of the data a = (a1, . . . , ak) given the latent
secondary structure (η,λ). Assume the joint probability mass function (p.m.f.) p(a|η,λ)
is a product over blocks:

p(a|ρ) = p(a|η,λ) =
m∏
j=1

pηj (alj , . . . , auj ),

where lj = 1 +
∑

j′<j λj′ , uj =
∑

j′≤j λj′ , and pηj is one of pH , pE , pT , and pC based on
the value of ηj ∈ S = {H,E, T,C}, as described below.

2.2.1 Sampling Model for Helices

We propose that the sampling model for a helical block, with joint p.m.f. pH(al, . . . , au), is
defined by a product of three simpler p.m.f.’s pH1, pH2, pH3, as follows:

pH(al, . . . , au) = pH1(al) ×
pH2(al+1|al) pH2(al+2|al+1) pH2(al+3|al+2) ×
pH3(al+4|al, al+1, al+3) · · · pH3(au|au−4, au−3, au−1),

where pH1 is a multinomial distribution with a category for each of the 20 amino acids,
pH2 is a 20-dimensional multinomial distribution conditioned on the value of the antecedent
amino acid, and pH3 is a 20-dimensional multinomial distribution conditioned on the val-
ues of the previous amino acid, the amino acid three positions back, and the amino acid
four positions back. This formulation for pH(al, . . . , au) is tractable, yet still respects the
biochemistry of helices.

The 20-dimensional probability vector for pH1 is taken to be the posterior mean from
a Bayesian model assuming a multinomial sampling model and a noninformative Dirichlet
prior with all hyperparameters equal to 1. The data for this estimation is obtained from the
PDB by counting the number of helical blocks that start with each of the 20 amino acids.
This estimation is performed “offline,” that is, this estimated probability vector is fixed and
assumed known when evaluating the likelihood for a helical block.

Since there are 20 amino acids on which to condition, there are 20 p.m.f.’s of type pH2.
Likewise, since there are 20×20×20=8,000 combinations of three amino acids, there are
8,000 p.m.f.’s of type pH3. Again, these probability vectors are estimated from the PDB and
assumed to be known when evaluating the helical likelihood.



2.2.2 Sampling Model for Strands

We propose that the sampling model for strands, with joint p.m.f. pE(al, . . . , au), is defined
by a product of three simpler p.m.f.’s pE1, pE2, pE3, as follows:

pE(al, . . . , au) = pE1(al) ×
pE2(al+1|al) ×
pE3(al+2|al, al+1) pE3(al+3|al+1, al+2) · · · pE3(au|au−2, au−1),

where pE1 is a multinomial distribution with a category for each of the 20 amino acids,
pE2 is a 20-dimensional multinomial distribution conditioned on the value of the antecedent
amino acid, and pE3 is a 20-dimensional multinomial distribution conditioned on the values
of the previous two amino acids Again, this formulation pH(al, . . . , au) is tractable, yet
still respects the biochemistry of strands. Note that pE1 6= pH1 despite the fact that both
are marginal multinomial distributions. Likewise, pE2 6= pH2 despite the fact that both are
conditional multinomial distributions given an amino acid. In particular, pE1, pE2, and pE3

are estimated from PBD data involving strands, whereas pH1, pH2, and pH3 are estimated
from PBD data involving helices. Still the estimation strategy for the probability vectors is
the same.

2.2.3 Sampling Model for Turn

We propose that the sampling model for turns, with joint p.m.f. pT (al, . . . , au), is defined
by a product of simpler p.m.f.’s, as follows:

pT (al, . . . , au)

= pT31(al) pT32(al+2|al) pT33(al+1|al, al+2) if u− l = 2

= pT41(al) pT42(al+3|al) pT43(al+1|al, al+3) pT43(al+2|al, al+3) if u− l = 3

= pT51(al) pT52(al+4|al) pT53(al+1|al, al+4) pT53(al+3|al, al+4) ×
pT54(al+2|al+1, al+3) if u− l = 4,

where each condition in the equation above is estimated based on the PDB data using hy-
drogen bonded turns of length 3, 4, and 5 amino acids, respectively. If the length is larger
than 5, we assume the first five units sample from the turn model and the other units sample
from the coil model, which is described below.

2.2.4 Sampling Model for Coil

We propose that the sampling model for coils, with joint p.m.f. pC(al, . . . , au), is defined
by a product of simpler p.m.f.’s, as follows:

pC(al, . . . , au) = pC1(al) pC2(al+1|al) pC2(al+2|al+1) · · · pC2(au|au−1)

whose component distributions are again estimated from the PDB data.

2.3 Prior Distribution
The model is completed by specifying the prior distribution, with p.m.f. p(ρ) = p(η,λ).
Let m denote the number of blocks in ρ. We consider a prior of the form:

p(ρ) = p(η,λ) = p(m)p(η|m)p(λ|η,m),

but this p.m.f. equals zero if, for j = 1, . . . ,m, any of the following conditions are met:
1. η1 6= C, 2. ηm 6= C, 3. λj < 5 and ηj = H , 4. λj < 3 and ηj = E, or 5. λj < 3 and



ηj = T . All of those conditions violate the biochemistry inherent in secondary structure.
We specify the components of this hierarchical prior using 16, 675 amino acid sequences
from the PDB, together with their corresponding secondary structures. The total number of
analyzed blocks is 471, 361.

Based on a simple linear regression of the number of blocks m on the known length k
of an amino acid sequence a, we let the prior on the number of blocks be m ∼ Normal(
2.347253+0.154154k, (5.526382/d)2), where d is a hyperparameter limiting the spread of
the prior distribution on the number of blocks m.

For all the 16, 675 secondary structure ρ’s, the secondary structure of the first and last
block is coil. Therefore, we assume p(ρ) = 0 if η1 6= C or ηK 6= C. For all the other posi-
tions, we assume the number of the blocks of each type follow a multinomial distribution:

(mH ,mE ,mT ,mC)|m ∼ Multinomial(m− 2,θ),

where θ = (θH , θE , θT , θC) = (0.170207, 0.224021, 0.178348, 0.427424) is obtained from
all the 471, 361 blocks in the PDB, except the first and last ones of each structure. So we
can write the conditional prior of η given m as:

p(η|m) =
m!

mH !mE !mT !mC !
θmH
H θmE

E θmT
T θmC

C .

Lastly, we consider the distribution of block length for each block type. The minimum
block length for helix, strand, turn, and coil is 5, 3, 3, and 1, respectively. Because of the
large variance, we use the negative binomial distribution to model the block length for each
block form. Reading all the 471, 361 blocks in the PDB, the parameters are estimated by the
maximum likelihood estimation (MLE) method and given as:

λj |ηj ∼


5 + Negative Binomial(1.885880, 6.953392) if ηj = H

3 + Negative Binomial(2.521091, 2.899121) if ηj = E

3 + Negative Binomial(0.839557, 0.728294) if ηj = T

1 + Negative Binomial(0.990796, 3.725501) if ηj = C.

3 MCMC Algorithms
Our goal is to make inference on the secondary structure ρ given the amino acid se-

quence a. We use Markov chain Monte Carlo (MCMC) methods described below to sample
from the posterior distribution p(ρ|a) ∝ p(a|ρ)p(ρ). The Metropolis Hastings (MH) ratio
can be written as:

r =
p(ρ∗|a)

p(ρ(t−1)|a)
q(ρ(t−1);ρ∗)

q(ρ∗;ρ(t−1))
,

where q(ρ∗;ρ(t−1)) is the proposal density, the density for proposing a move to ρ∗ given the
previous state ρ(t−1) and q(ρ(t−1);ρ∗) is the reverse case. The move is accepted ρ(t) = ρ∗

with the probability min(1, r), otherwise, the move is rejected and ρ(t) = ρ(t−1).
In order to make the Markov chain ergodic and efficient, we design five types of moves:

forward addition, backward addition, forward shift, backward shift, and sub-block replace-
ment. We denote Qκ, κ = 1, 2, · · · , 5, as the probability to propose the corresponding type
of move on each MCMC step.

The first two moves are to add a unit for jth block from the following block j + 1
(forward) or the previous block j − 1 (backward) while keeping η unchanged. The ratio



of proposal densities is Q1/Q2 for forward case and Q2/Q1 for backward case, so the MH
ratio is the ratio of the posterior probabilities of ρ∗ and ρ(t−1) multiplies Q1/Q2 or Q2/Q1.

To make our algorithms more efficient, we also design shift moves, that is, to shift for-
ward or backward a randomly selected block j. The ratio of proposal densities is Q3/Q4

for forward case and Q4/Q3 for backward case, so the MH ratio is the ratio of the posterior
probabilities for ρ∗ and ρ(t−1) multiplies Q3/Q4 or Q4/Q3. Notice that the only parameter
we change in the above four types of moves is λ and the number of blocks m remains the
same.

We also consider a Gibbs sampling algorithm for a sub-block replacement move. In this
step, we randomly choose a block j, j = 2, 3, · · · ,m, except the first and last one. We cut
out a section of this block, that is, start from a random starting point within the block and
end up with a possible random length. Then, we calculate the conditional probability of
generating this sub-block by each secondary structure form, H , E, T , and C. These four
unnormalized conditional probabilities are assigned as the sampling weight to each form.
Notice that we may change the whole block form ηj or split the block into two or three
sections in this move. So the number of blocks m may change.

4 Results
We evaluated the performance of our proposed method using data from the PDB which

contains not only the data (amino acid sequence a) but also the true secondary structure ρ
for thousands of proteins. We can then compare our estimates for ρ with the true value for
many proteins. All computations were conducted in R on a Mac laptop with 2.3 GHz Core
i7 CPU and 16 GB memory.

The settings of our algorithms are d = 4, Q1 = Q2 = Q3 = Q4 = 0.1, and Q5 = 0.6.
We randomly select 200 amino acid sequences out of 16, 675 from the PDB, whose lengths
range from 27 to 1, 114 and implement the MCMC algorithms with 10, 000 iterations per
sequence.

We report the following observations. First, the algorithm is fast. For example, 10, 000
iterations on a 100-long sequence only takes 30 seconds (CPU time) and 400 seconds (wall
time). The runtime increases approximately linearly in length. Second, our algorithm has
satisfactory convergence property. We run multiple independent chains starting from dif-
ferent randomly chosen secondary structure states. Trace plots of the posterior probability
indicate convergence and good mixing, as shown in Figure 1 (Left). Third, our Metropolis-
Hastings sampling scheme is very efficient. Discarding the first half iterations as burn-in
period, the averaged acceptance rate for addition and shift moves are 40% and 29%, respec-
tively.

We considered two ways to summarize the posterior distribution of ρ to yield a point
estimator: 1. Choosing a particular ρ that maximize the posterior probability p(ρ|a) and
2. Selecting the most likely block form for each position. We name them the maximum
a posteriori method (MAP) and the marginal probability method (MP), respectively. The
accuracy is defined as the number of actual forms that are correctly predicted, divided by
the number of all actual forms. Figure 1 (Right) shows an example to examine the accuracy
and Table 1 lists the accuracy summary. The accuracy achieved by MAP and MP methods
are almost the same. Among the four secondary structure forms, the helical sampling model
performs better than others, with an accuracy of about 90% by the MP method.



Figure 1: Consider the amino acid k66a as an example. Left: the trace plot of the unnormal-
ized log posterior probability p(ρ|a) of multiple chains with the horizontal truth line; Right:
the true (red dash line) structure and the predicted (black solid line) structure by MAP.

Table 1: Accuracy of maximum a posteriori (MAP) and marginal probability (MP) methods
MAP MP

Overall Helix Strand Turn Coil Overall Helix Strand Turn Coil

Median 0.474 0.813 0.468 0.267 0.258 0.483 0.890 0.500 0.250 0.177
Mean 0.475 0.820 0.467 0.284 0.281 0.483 0.870 0.503 0.273 0.220
SD 0.115 0.122 0.165 0.202 0.146 0.132 0.136 0.164 0.200 0.142

5 Conclusion
The predictive performance of our method in its current form is inconsistent, but can

be improved within the proposed framework. The predictive performance for helical struc-
ture is quite good, so we plan on reformulating the sampling models for coils, strands, and
turns. We also hypothesize that we can improve the predictive accuracy by more accurate
estimation of the probability vectors in the sampling model for secondary structure. We
currently compute them using a multinomial sampling model and a noninformative Dirich-
let prior. Take, for instance, the case of the 8, 000 p.m.f.’s of type pH3. We hypothesize
that many of the 8, 000 probability vectors of type pH3 will be similar and, as such, we can
borrow strength in estimating the 8, 000 probability vectors using Bayesian nonparametric
techniques. The first idea is to borrow strength using a Dirichlet process mixture model. We
eventually propose to use a novel random partition distribution index by pairwise distances
in which items that are “close” to each other (in terms of their biochemistry) cluster with
higher probability than distant ones.
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