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 We consider two different scenarios of combining data from two independent surveys to 
make inferences on parameters of interest. In scenario 1, a large sample from survey 1 
observes only auxiliary variables related to a variable of interest and a much smaller 
sample from survey 2 observes both the variable of interest and the auxiliary variables. 
We generate synthetic values of the variable of interest by fitting a working model to 
survey 2 data and then predicting the variable of interest associated with the auxiliary 
variables observed in survey 1. A projection estimator of a total or a domain total is 
simply obtained from survey 1 weights and associated synthetic values reported in survey 
1 data file. Replication variance estimators are obtained by augmenting the synthetic data 
file for survey 1. In scenario 2, regression analysis is studied when some of the predictor 
variables of interest are observed in a different survey. Instrumental variables and 
fractional imputation are used to implement statistical matching or data fusion and make 
inference on the regression parameters from the completed data file. 
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I. Introduction 
 
We consider two different scenarios of combining data from two independent surveys 
from the same target population consisting of N elements to make inferences on 
parameters of interest. In scenario 1, a large sample 1A from survey 1 collects information 
on a variable x and a much smaller sample 2A from survey 2 collects information on both 
x  and a variable of interest y which is more expensive to observe than x . Our primary 
interest under scenario 1 is to create a single synthetic dataset of proxy variables iy~ for 
the unobserved iy associated with ix in survey 1 by fitting a working model to survey 2 
data. The proxy data together with the associated survey weights, 1iw , of survey 1 are then 
used to produce projection estimators of the population total of y and domain totals of y . 
In one application of the synthetic data approach, survey 2 observed both self-reported 
health measurements, ix , and clinical measurements from physical examinations, iy , for 
a small sample 2A  of individuals, while the much larger survey 1 observed only ix . Only 



the imputed, or synthetic, data and associated survey 1 weights are released to the public 
(Reiter, 2008). We use a model-assisted approach, based on a working model relating 
y to x , to generate the synthetic values, and our approach is robust against failure of the 
working model.  
 
In scenario 2, we have two independent samples A  and B . Sample A observes x and 1y  
while sample B measures x and another variable 2y . The variables of interest 21  and yy  
are not jointly observed. Our interest is to create a synthetic value 1

~y associated with the 
unobserved 1y  for each element in sample B by finding a statistical match from 
sample A  on the basis of the variable x  common to samples A and B . Completed data 
file with 21  and ~, yyx is used to estimate the parameters of linear regression of 2y on 1y  
and other parameters of interest.  
 
A popular method of statistical matching assumes that the variables 21  and yy  not jointly 
observed are conditionally independent given the common variable x . For example, 
nearest neighbor (NN) matching assumes conditional independence (CI). The   
conditional association between 1y  and 2y given x cannot be estimated from the 
observed data. However, Rassler (2004) proposed a multiple imputation (MI) method 
based on explicit models to impute the unobserved 1y  in survey B  for different values 
describing the conditional association. Imputed data sets are then used to estimate the 
unconditional association between 1y  and 2y . Simulation results indicated that the 
proposed method performs well in terms of confidence interval coverage unlike NN. In 
section 4 we propose an alternative method based on an instrumental variable (IV) for the 
unobserved 1y  in sample B .  
 
2. Scenario 1 
 
2.1 Total and domain totals 
 
Suppose that the total ∑=

=
N

i iyY
1

is the parameter of interest and that the working model 

for iy is iiii mxmxyE == ),()|( β , var )()|( 2
iii maxy σ= for some known function 

)( ima and cov 0),|,( =jiji xxyy for ji ≠ . Based on }),,{( 2Aixy ii ∈ we obtain an 

estimator β̂  as the solution of estimating equations 0)(2 =−∑ iiii hmyw , where 2iw are 
the survey 2 weights, )(/)/( iii mamh β∂∂=  and the summation is over 2Ai∈ . We 
assume that the first element of the vector ih is equal to 1. For a continuous variable 
y and linear regression with ii xm 10 ββ +=  and 1)( =ima , we have ),1( ′= ii xh . 
Similarly, for a binary variable y and logistic regression with logit ii xm 10)( ββ += and 

)1()( iii mmma −= we have ),1( ′= ii xh . In those cases, the first estimating equation 

reduces to 0)ˆ(2 =−∑ iii myw  where )ˆ,(ˆ βii xmm = . 
 



In the case of a continuous variable y we compute the imputed or synthetic values 

iii mxmy ˆ)ˆ,(~ == β for each 1Axi ∈ and report them in the survey 1 data file, using 

β̂ obtained from survey 2 data. In the case of a binary variable y the survey 1 data file 
will report binary synthetic values 1~ =iy and 0 with associated fractions im̂ and im̂1− for 
each 1Ai∈ . The projection estimator of the total Y based on the reported synthetic values 
in the survey 1 data file is given by 
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where the summation is over 1Ai∈ and 1iw is the survey weight associated with 1Ai∈ . 
Kim and Rao (2012) showed that the projection estimator (1) is asymptotically design 
unbiased if the first estimating equation above holds or the first element of 

1  toequal is ih for 2Ai∈ . Note that the projection estimator (1) is derived from the 
working model but our results do not depend on the validity of the working model, 
although efficiency of estimators may be affected.  
 
For the estimation of a domain total i

N

i id ydY )(
1∑ =

= δ , the projection estimator is given 

by iiipd ydwY ~)(ˆ
1, δ∑= where )(diδ is the indicator variable for domain d taking the 

value 1 if unit 1Ai∈ belongs to the domain and 0 otherwise. For domains specified in 
advance or planned, the working model can be augmented by including the domain 
indicator and the resulting synthetic values are reported in the survey 1 data file. This 
ensures asymptotic design unbiasedness of the domain projection estimator pdY ,

ˆ in the 
case of a linear regression or a logistic regression working model (Kim and Rao 2012). 
Alternatively if the domain is not planned then the asymptic bias of the domain projection 
estimator relative to the domain total is negligible if the domain indicator )(diδ is 
approximately unrelated to the residual iii myr −= . This will be the case if the working 
model is correctly specified.  
 
For estimating the variance of the projection estimators, Kim and Rao (2012) proposed a 
pseudo-replication method that requires the generation of synthetic data 
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i ∈ associated with 

survey 1 only. This method enables the user to correctly estimate the variance of the 
projection estimator without access to the data from survey 2. The data file will contain 
additional columns },~{ 1

)( Aiy k
i ∈ associated with the columns of replicate weights 

},{ 1
)(

1 Aiw k
i ∈ , 1,...,1 Lk =  where 1L is the number of replicates created from survey 1. 

Hence the price one pays to use only survey 1 synthetic data is to increase the number of 
columns in the data file by 1L for each variable y for which synthetic values are generated. 
Typically, the number of such variables may be small. The replicate projection estimator 



is computed from the additional columns )(~ k
iy and )(
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resulting replicate variance estimator is of the form  
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where the factor kc depends on the replication method used. Kim and Rao (2012) 
established the design consistency of the variance estimator (2). Replication variance 
estimator for the domain projection estimator is similarly obtained. 
 
2.2 Distribution function 
 
Suppose we wish to estimate the distribution function )()(

1
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continuous variable y for a given t , where (.)I is the indicator function. If iy for 

1Ai∈ were observed then a design-consistent estimator of )(tFN is given by 
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iii www are the normalized survey 1 weights. In 

the case only ix  is observed for 1Ai∈ , the projection estimator )ˆ(~)(ˆ
1 tmIwtF iip ≤= ∑  

based on the deterministic imputed  values ii my ˆ~ = will not be design consistent unlike 

the projection estimator pŶ of the total Y . Hence, we cannot make design-based 
inferences on the distribution function using a working model.  
 
It will be necessary to use a design-model approach assuming that an imputation model 
holds. In particular, we assume the linear regression model iii xy σεββ ++= 10 , where 
the iε are independent and identically distributed with mean 0 and variance 2σ . We 

obtain design-weighted estimators σββ ˆ and ˆ,ˆ
10  from survey 2 data }),,{( 2Aixy ii ∈ and 

calculate the standardized residuals )ˆˆ(ˆ 10
1

jjj xye ββσ −−= − . We then select 1n residuals 
*
ie with probabilities proportional to 2jw and with replacement from the set of 

standardized residuals je , where 1n  is the number of units in 1A . The imputed values of 

iy for survey 1 are then given by **
10
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resulting projection estimator of )(~)(~by given  is )( *
1 tyIwtFtF iipN ≤= ∑ . In the context 

of missing data, Chauvet, Deville and Haziza (2013) proposed a similar method for 
estimating the distribution function and established its design-model consistency. We are 
presently studying the properties of the proposed projection estimator ).(~ tFp  
 
The projection estimator of the total Y is given by 

*
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*
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balanced sampling to satisfy 0*
1 =∑ ii ew , then pp YY ˆ~ = and, as noted earlier, pŶ is 

asymptotically design unbiased regardless of the validity of the model because 



.0)ˆ(2 =−∑ iii myw Thus a balanced sampling approach would give a projection 
estimator of total asymptotically design unbiased and at the same time provide a design-
model consistent estimator of the distribution function. Properties of such a balanced 
sampling approach will be studied. Chauvet, Deville and Haziza (2013) proposed 
balanced sampling to eliminate the imputation variance in the context of missing data.  
 
3. Scenario 2 
 
In scenario 2, we have two independent samples A and B and sample A observes 

1 and yx  while sample B measures x and another variable 2y . The variables of interest 

1y and 2y are not jointly observed. We are interested in the parameters 10  and ββ  of the 
linear regression model iii eyy ++= 1102 ββ with ),0(~ 2

eie σ  by creating a synthetic 
value 1

~y associated with the unobserved 1y  for each element in sample B on the basis of 
the common variable x observed in both samples A and B . If iy1 associated with 

iy2 were observed in the sample B , then the least squares estimators are denoted by 
*
1

*
0  and ββ .  

 
We now consider a two-step procedure to generate synthetic values  iy1

~  for Bi∈ . Step 1: 

Estimate the conditional distribution ),|( 1 ηxyf from sample A  by )ˆ,|(ˆ
1 ηxyfa , where 

η̂ is the design -weighted estimator of the parameter η of the normal conditional density. 
Step 2: For each element i  in sample B use the ix value to generate imputed value iy1

~ of 

iy1  from )ˆ,|(ˆ
1 ηia xyf . We then perform linear regression of ii yy 12

~on   for Bi∈  to 

obtain least squares estimators 10
~ and ~ ββ as proxies to the unknown *

1
*
0  and ββ . The  

estimators 10
~ and ~ ββ will be consistent under the CI assumption but biased if the CI 

assumption is not satisfied. In the case of linear regression models for 1y  on x and 2y  on 

1y , it is not necessary to make distributional assumptions and one can use stochastic 
regression imputation from sample A  to generate iy1

~ for the elements i in sample B .  
 
We now turn to the two-stage least squares (2SLS) approach by assuming that x is an 
instrumental variable for 1y  in the sense that the conditional distribution of 2y given 1y  
and x does not depend on x : ).|(),|( 1212 yyfxyyf = That is, 2y and x are conditionally 
independent given 1y .We replace the unobserved iy1 for Bi∈ by the least squares 
predictor ii xy 101 ˆˆˆ αα += obtained from the sample A data }),,{( 1 Ajxy jj ∈ under the 

working linear regression model jjj uxy ++= 101 αα with ),0(~ 2
uju σ and then perform 

linear regression of iy2 on iy1ˆ to obtain the 2SLS least squares estimators 10
ˆ and ˆ ββ . 

Under the IV assumption it can be shows that the 2SLS estimators are unbiased with 
respect to the assumed linear regression model iii eyy ++= 1102 ββ with ),0(~ 2

eie σ . 
The 2SLS method is very simple to implement. We have also evaluated the variance of 



the 2SLS estimator 1β̂  which shows that the variance of the estimator can be large if the 
correlation between 1 and yx is small.  
 
The 2SLS method is designed to estimate only the regression parameters and also it is not 
directly applicable if the regression model is not linear. For general models, we have 
developed a parametric fractional imputation method, making distributional assumptions, 
but it is not discussed in this short paper. 
 
4. Simulation study 
 
We have conducted simulation study by generating samples under the IV assumption. As 
expected, the CLT-based estimators led to large biases and mean squared errors unlike 
the 2SLS estimators. Results are not reported in the paper.  
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