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Abstract
In this paper we present a general methodology to improve the estimate of crop

acreage by combining information from June Area Survey (JAS), administrative data
from Farm Service Agency (FSA), and satellite imagery data summarized in Cropland
Data Layer (CDL). Both a structural model and a measurement model are specified
for the FSA and CDL data. The measurement error model is used to quantify the
uncertainty in the estimate from each source, and the structural model is used to model
the survey population. A parametric fractional imputation method is developed to
estimate the parameters of the structural models, and a generalized method of moment
is used to produce the final estimate of the crop acreage. The methodology is applied
to produce improved estimate of crop acreage.

Keywords: Parametric fractional imputation; generalized method of moment; crop
acreage; structural model

1 Introduction

Jun Area Survey is one of the largest annual NASS survey project which is designed to ac-
count for all land in all states except Alaska. All agricultural activities and land uses within
the sampled segment boundaries are collected to provide direct estimates for acreage, cattle
inventory, crop production summary, and many other publications. In this paper we focus
on the estimation of acreage. Annually during the first two weeks of June nearly 11,000
segments of roughly the size of one square mile are selected for data collection. Though
JAS can provide fairly reliable and timely estimates of acreage at the state level, those
estimates can be improved by incorporating information from other sources such as the ad-
ministrative record data from the Farm Service Agency (FSA) and the satellite imagery data
summarized in Cropland Data Layer (CDL). If one is interested in small area estimation
such as the county level acreage estimator, the use of all sources of information becomes
critical as the sample size in JAS is not large enough to provide reliable estimates at county
level. In this paper we consider the problem of combining three sources of information
from JAS, FSA, and CDL to provide reliable, timely, and detailed estimation of acreage.

In JAS, the sample observations are obtained from a probability sampling. The FSA
data is obtained from a voluntary participation of certain programs. The CDL data is ob-
tained from the classification of satellite imagery data using a tree-based machine learning
algorithm. To combine three source, we need county level estimates from each source.
That is, we need
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1. JAS estimate: X̂i and V̂ (X̂i)

2. FSA estimate: Ŷ1i and V̂ (Ŷ1i)

3. CDL estimate: Ŷ2i and V̂ (Ŷ2i)

where subscript i denotes county i. In some case, we may have missing observation of X̂i

and V̂ (X̂i) because no JAS sample is selected from that county. The counties with missing
values are not used for parameter estimation but are considered for prediction. Let Xi be the
ideal measurement of the acreage at the time of JAS operation which is free of sampling
error. Our goal is to obtain a best prediction of Xi. A ratio-adjustment strategy can be used
if estimation at a later reference time need to be considered.

From the FSA data, we can construct two models, one is the structural error model and
the other is the measurement error models. The structural error model associated with the
FSA data can be written as

Y1i = β0 +β1Xi + e1i, (1)

where Y1i is the ideal measurement of the acreage at the time FSA data is collected, and
e1i ∼ (0,σ2

1). The measurement error model is

Ŷ1i = Y1i +u1i, (2)

where u1i ∼ (0,V̂ (Ŷ1i)). The structure model (1) is used to model the difference in acreage
at the two reference time. The special case of (β0,β1) = (0,1) means that the (true) crop
acres at the time of FSA estimation remain unchanged until JAS estimation, which it is not
likely to hold. The model error e1i represents the lack of fit when explaining the difference
in the reference time.

Similarly, we can construct two models for CDL data. One is the structural error model,
denoted by

Y2i = β∗0 +β∗1Xi + e2i,

where e2i ∼ (0,σ2
2), and the other is the measurement error model, denoted by

Ŷ2i = Y2i +u2i,

where u2i ∼ (0,V̂ (Ŷ2i)).
Thus, for each source, we have two models. One is the structural error model and the

other is the measurement error model. The structural error model is the model about the
survey population while the measurement error model is the model about the estimates.
We assume that the measurement variances can be estimated relatively accurately. In prac-
tice, we use a smoothing technique to reduce the variability associated with the variance
estimates.

Note that The structural error model in (1) can be replaced by a parametric statistical
model

Y1i ∼ f (y1i | xi;θ1),

where the parametric model f (·;θ1) is indexed by θ1. For small crops, such parametric
model approach can be useful.

In Section 2 we introduce the method for estimating the parameters in the structural
error model. Prediction of Xi is covered in Section 3. We conclude with a discuss of
possible refinement of the approach.



2 Parameter estimation

In this section, we first introduce the basic theory for parameter estimation of the measure-
ment error models for FSA data. The parameter estimation for CDL data can be performed
similarly. Note that only parameters in the structural error models need to be estimated.
Using the theory of measurement error models (Fuller, 1987), a consistent estimator of
(β0,β1) can be obtained by minimizing

Q∗(β0,β1)=
H

∑
h=1

(
ȳ1h−β0−β1

ˆ̄Xh

β1(x̄h− ˆ̄Xh)

)′{
V

(
ȳ1h−β0−β1

ˆ̄Xh

β1(x̄h− ˆ̄Xh)

)}−1 (
ȳ1h−β0−β1

ˆ̄Xh

β1(x̄h− ˆ̄Xh)

)
.

(3)
After some algebra, it can be shown that (3) reduces to

Q∗(β0,β1) =
H

∑
h=1

(ȳ1h−β0−β1x̄h)
2

V (ȳ1h−β0−β1x̄h)
. (4)

As we can write
ȳ1h−β0− x̄hβ1 =−ahβ1 +bh + ē1h,

we have
V (ȳ1h−β0− x̄hβ1) = σ2

e,h +(−β1,1)Σh (−β1,1)′ . (5)

where σ2
e,h = V (ē1h) and Σh = V {(ah,bh)′}. As we can obtain a consistent estimator of the

variance-covariance matrix of (ah,bh), we can obtain (β̂0, β̂1) minimizing Q∗(β0,β1) in (4)
if σ2

e,h is known. Thus, writing

Q∗(β0,β1) =
H

∑
h=1

wh(β1)(ȳ1h−β0−β1x̄h)
2 , (6)

where
wh(β1) =

{
σ2

e,h +(−β1,1)Σh (−β1,1)′
}−1

,

we have

∂
∂β0

Q∗ = 0 ⇐⇒
H

∑
h=1

wh(β1)(ȳ1h−β0−β1x̄h) = 0

and so
β̂0 = ȳw− β̂1x̄w, (7)

where

(x̄w, ȳw) =

{
H

∑
h=1

wh(β̂1)

}−1 H

∑
h=1

wh(β̂1)(x̄h, ȳh) .

Plugging (7) into (6), we have only to minimize

Q∗
1(β1) =

H

∑
h=1

wh(β1){ȳ1h− ȳw−β1(x̄h− x̄w)}2 . (8)



Thus, we need to find the solution to ∂Q∗
1/∂β1 = 0 where

∂
∂β1

Q∗
1 =

H

∑
h=1

{
∂

∂β1
wh (β1)

}
{ȳ1h− ȳw−β1(x̄h− x̄w)}2

−2
H

∑
h=1

wh(β1)(x̄h− x̄w){ȳ1h− ȳw−β1(x̄h− x̄w)} .

Using
∂

∂β1
wh(β1) =−2{wh(β1)}2 {β1V (ah)−C(ah,bh)} ,

and
{ȳ1h− ȳw−β1(x̄h− x̄w)}2 p→ σ2

e,h +(−β1,1)Σh (−β1,1)′ = 1/wh(β1),

where
p→ denotes the convergence in probability, the solution to ∂Q∗

1/∂β1 = 0 satisfies

β̂1 = ∑H
h=1 wh(β̂1){(x̄h− x̄w)(ȳ1h− ȳ1w)−C(ah,bh)}

∑H
h=1 wh(β̂1)

{
(x̄h− x̄w)2−V (ah)

} . (9)

Note that the weight wh(β1) depends on β1. Thus, the solution (9) can be obtained by an
iterative algorithm. Once β̂1 is computed by (9), then β̂0 is obtained by (7).

Thus, the method-of-moment estimator of the parameters can be obtained by the fol-
lowing steps:

1. Obtain β̂(0)
0 , β̂(0)

1 ,σ(0)2
1 by the OLS.

2. For each t, compute

w(t)
i =

{
σ̂(t)2

1 +V̂ (Ŷ1i)+ β̂(t)2
1 V̂ (X̂i)

}−1

3. Compute

β̂(t+1)
1 =

∑i w(t)
i

(
X̂i− X̄ (t)

w

)(
Ŷ1i− Ȳ (t)

1w

)

∑i w(t)
i

{(
X̂i− X̄ (t)

w

)2
−V̂ (X̂i)

}

β̂(t+1)
0 = Ȳ (t)

1w − β̂1(t+1)X̄
(t)
w

and

σ̂(t+1)2
1 =

∑i w(t)
i

{(
Ŷ1i− β̂(t+1)

0 − β̂(t+1)
1 X̂i

)2
−V̂ (Ŷ1i)− β̂(t+1)2

1 V̂ (X̂i)
}

∑i w(t)
i

where
(

X̄ (t)
w ,Ȳ (t)

1w

)
=

(
∑

i
w(t)

i

)−1

∑
i

w(t)
i

(
X̂i,Ŷ1i

)
.

4. Goto Step 2 until convergence.

This is an iterative computation of method-of-moment estimators.



Instead of the MOM estimation, we can also consider the maximum likelihood esti-
mation. In particular, we can use the parametric fractional imputation of Kim (2011) for
maximum likelihood estimation. An iterative computation of the maximum likelihood es-
timator can be described as follows:

1. Obtain θ̂(0)
1 = (β̂(0)

0 , β̂(0)
1 ,σ(0)2

1 ) by the OLS.

2. Generate m values of Xi, denoted by x∗(1)
i , · · · ,x∗(m)

i , from N(X̂i,V̂ (X̂i)).

3. For each x∗( j)
i , assign fractional weights

w∗i j ∝ g(Ŷi | x∗( j)
i ; θ̂(t)

1 ,V̂ (Ŷi))

where g(Ŷi | xi; θ̂(t)
1 ,V̂ (Ŷi)) is the density of Ŷi conditional on xi and ∑m

j=1 w∗i j = 1.
Because Ŷ1i = Y1i +u1i, the density of Ŷ1i is the convolution of the density of Y1i and
the density of u1i. If u1i ∼ N(0,V̂ (Ŷ1i)) in (2), then

g(Ŷi | xi; θ̂(t)
1 ,V̂ (Ŷi)) =

∫
f (y | x∗( j)

i ; θ̂(t)
1 )×φ

{
(Ŷi− y)

(V̂ (Ŷi))1/2

}
dy.

4. Using the fractionally imputed data in Step 3, solve the imputed score equation to
obtain the updated parameters. That is, solve

∑
i

m

∑
j=1

Eu1i

{
S(θ1;x∗( j)

i ,Ŷ1i−u1i)
}

= 0

where S(θ1;x,y) = ∂ log f (y | x;θ)/∂θ1 is the score function and Eu1i(·) is the expec-
tation with respect to the distribution of u1i = Ŷ1i−Y1i.

5. Using the updated parameters, check the convergence. Goto Step 3 until conver-
gence.

This is a version of Monte Carlo EM (MCEM) algorithm using parametric fractional im-
putation. The resulting estimator is very close to the maximum likelihood estimator of θ1
for sufficiently large m. Instead of the MCEM, one can also consider a Bayesian approach
using Markov Chain Monte Carlo, which is computationally more challenging and also the
convergence is hard to check.

3 Prediction

We now discuss best prediction from the measurement error models. The goal is to obtain
an improved predictor of Xi. For the simple linear model setup, we can apply the GLS
method 


Ŷ1i− β̂0

Ŷ2i− β̂∗0
X̂i


 =




β̂1

β̂∗1
1


Xi +




e1i +u1i

e2i +u2i

ui




where 


e1i +u1i

e2i +u2i

ui


∼






0
0
0


 ,




V̂ (Ŷ1i)+ σ̂2
1 0 0

0 V̂ (Ŷ2i)+ σ̂2
2 0

0 0 V̂ (X̂i)









Thus, we can express
Y = Zθ+ e

where e∼ (0,V̂ ) and obtain

θ̂ = (Z′V̂−1Z)−1Z′V̂−1Y. (10)

The assumption of Cov(e1i,e2i | Xi) = 0 may not be true. However, accuracy of V̂ is less
critical.

In some counties, we may not have X̂i. (No JAS sample in the county). In this case, we
can use (

Ŷ1i− β̂0

Ŷ2i− β̂∗0

)
=

(
β̂1

β̂∗1

)
Xi +

(
e1i +u1i

e2i +u2i

)

and apply the GLS estimator.
In the fractional imputation approach, the goal is to obtain a Monte Carlo approximation

of the conditional expectation, E(Xi | X̂i,Ŷ1i,Ŷ2i). Since

f (Xi | X̂i,Ŷ1i,Ŷ2i) ∝ f (Xi | X̂i) f (Ŷ1i,Ŷ2i | Xi),

and assuming Cov(e1i,e2i | Xi) = 0, the best predictor of Xi is obtained as a by-product of
the computation. That is, we simply use

X̂∗
i =

∑m
j=1 w∗1i jw

∗
2i jx

∗( j)
i

∑m
j=1 w∗1i jw

∗
2i j

,

where w∗1i j are the fractional weights used for parameter estimation associated with the FSA
data and w∗1i j are the fractional weights used for parameter estimation associated with the
CDL data.

Once X̂∗
i are obtained, the state-level estimate for state h is simply computed by

X̂∗
h = ∑

i∈Uh

X̂∗
i , (11)

where Uh is the set of counties in state h.

4 Discussion

Structural error model is important to link two different sources in the population. However,
we observe only sample estimates, not the population values, and so measurement error
model (or sampling error model) is also needed. The GLS method (or fractional imputation)
is a useful tool for the parameter estimation and prediction. Variance estimation is not
discussed and will be a topic of future research.
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