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Abstract

Current trends in survey sampling show a growing interest in integrating data from
different surveys for improved estimation and analysis of population characteristics.
For any case of different surveys sharing common items, we propose micro-integration
of data through a suitable calibration scheme for the sampling weights of the combined
sample, which produces a set of weights that incorporate all available information in
the various surveys. These weights can be used to calculate weighted statistics, includ-
ing totals, means, ratios, quantiles and regression coefficients. In particular, we obtain
composite estimators of population totals that are asymptotically best linear unbiased
estimators, or more practical composite estimators that are generalized regression es-
timators of a specific type and for certain sampling designs asymptotically best linear
unbiased estimators. The construction of the calibration estimators is explained, and
their statistical and computational efficiency is also discussed.
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1 Introduction

Integration of survey data may be generally defined as some combination of information
from various surveys. Possibilities for such integration are on the increase in contemporary
survey practice, primarily in social surveys. This is because there is a growing interest in in-
tegrating field work and survey functions of various survey sources for diverse reasons, such
as, reduced cost and efficient survey operations, reduced response burden and improved
data quality, harmonized survey content and data consistency, and improved estimation and
analysis. A compilation of examples of data integration is presented in Merkouris (2010a).

This paper concerns integration of survey data for the improvement of estimation of
population characteristics, particularly totals. Such improvement is possible when there are
common items among the various surveys, by pooling data on these items and by exploiting
the correlation between various items of these surveys. A statistically and computationally
efficient micro-integration of data through an appropriate adjustment of the survey weights
can be accomplished by a suitable calibration scheme, which is based on the principles of
best linear unbiased estimation and generalized regression estimation.

Underlying the integration of survey data for improved estimation, is the assumption
that combined data on common items are comparable, or, as usually called, harmonized.
It is to be noted that harmonization of data is increasingly practiced in National Statistical
Agencies.



In Section 2, a general calibration methodology for composite estimation and its con-
nection to best linear unbiased estimation and generalized regression estimation is demon-
strated through two paradigms of data integration. The efficiency of the proposed calibra-
tion estimators is discussed in Section 3. Concluding remarks are made in Section 4.

2 Best linear unbiased estimation and calibration

2.1 A basic example

Consider first a basic setting of data integration, involving two surveys with samples S1 and
S2, not necessarily independent, drawn from the same population with arbitrary designs
and sizes n1 and n2. A vector of variables x and a vector of variables y are surveyed in
S1 and S2, respectively, and a vector of variables z is surveyed in both samples. We denote
by wi the vector of design weights for sample Si, i = 1, 2, and by Xi, Yi and Zi the
sample matrices of x, y, and z, the subscripts indicating the sample. We denote by X̂ the
Horvitz-Thompson (HT) estimator X

′
1w1 of the total tx of x, by Ŷ the HT estimator of the

total ty of y, and by Ẑi the two HT estimators (based on Si) of the total tz of z. For more
efficient estimation of the totals tx, ty and tz we seek composite estimators that combine
all the available information on x, y, and z in the two samples. Such composite estimators
that are best linear unbiased estimators (BLUE), i.e., minimum-variance linear unbiased
combinations of the four estimators X̂, Ẑ1, Ŷ and Ẑ2, are denoted by X̂B , ŶB and ẐB and
given in matrix form by

(X̂B′ , ŶB′ , ẐB′)
′
= P(X̂

′
, Ẑ
′
1, Ŷ

′
, Ẑ
′
2)
′

(1)

where P = (W
′
V−1W)−1W

′
V−1, the matrix W has entries 1’s and 0’s and satisfies

E[(X̂
′
, Ẑ
′
1, Ŷ

′
, Ẑ
′
2)]
′
= W(t

′
x, t

′
y, t

′
z)
′
, and V is the covariance matrix of (X̂

′
, Ẑ
′
1, Ŷ

′
, Ẑ
′
2)
′
.

It follows that Var[(X̂B′ , ŶB′ , ẐB′)
′
] = (W

′
V−1W)−1. Such an approach to compos-

ite estimation has been explored in two specific contexts of survey sampling; see Wolter
(1979), Jones (1980) and Fuller (1990), Chipperfield and Steel (2009) and Merkouris (2013).

A more practical formulation of this estimation procedure is as follows. Using the
condition of unbiasness, E(X̂B) = tx, E(ŶB) = ty and E(ẐB) = tz, we obtain the
matrix P of the coefficients in the linear combinations in (1) as

P =

 I Bx 0 −Bx

0 By I −By

0 Bz 0 I−Bz

 ,
and (1) takes then the form

(X̂B′ , ŶB′ , ẐB′)
′
= (X̂

′
, Ŷ

′
, Ẑ
′
2)
′
+B(Ẑ1 − Ẑ2), (2)

where B is the second column in P , with optimal (variance-minimizing) value Bo =
−Cov[(X̂

′
, Ŷ

′
, Ẑ
′
2)
′
, Ẑ1 − Ẑ2][Var(Ẑ1 − Ẑ2)]

−1. Thus, an explicit expression of (2) is

X̂B =

ŶB =

ẐB =

X̂− Cov[(X̂, Ẑ1 − Ẑ2][Var(Ẑ1 − Ẑ2)]
−1[Ẑ1 − Ẑ2]

Ŷ − Cov[(Ŷ, Ẑ1 − Ẑ2][Var(Ẑ1 − Ẑ2)]
−1[Ẑ1 − Ẑ2]

Ẑ2 − Cov[(Ẑ2, Ẑ1 − Ẑ2][Var(Ẑ1 − Ẑ2)]
−1[Ẑ1 − Ẑ2],

(3)



from which it follows that

Var(X̂B) =

Var(ŶB) =

Var(ẐB) =

Var(X̂)− Cov[(X̂, Ẑ1 − Ẑ2][Var(Ẑ1 − Ẑ2)]
−1Cov[(X̂, Ẑ1 − Ẑ2]

Var(Ŷ)− Cov[(Ŷ, Ẑ1 − Ẑ2][Var(Ẑ1 − Ẑ2)]
−1Cov[(Ŷ, Ẑ1 − Ẑ2]

Var(Ẑ2)− Cov[(Ẑ2, Ẑ1 − Ẑ2][Var(Ẑ1 − Ẑ2)]
−1Cov[(Ẑ2, Ẑ1 − Ẑ2].

(4)

It will give a hint for later development to notice that ẐB can be alternatively written as
Ẑ1 − (I − Bo

z)[Ẑ1 − Ẑ2] = Bo
zẐ1 + (I − Bo

z)Ẑ2, in obvious notation for Bo
z, and that

substitution of X̂ and Ŷ by Ẑ in (3) gives ẐB . The expressions in (4) show the efficiency of
ẐB relative to Ẑ1 and Ẑ2, and the dependence of the efficiency of X̂B and ŶB , relative to
X̂ and Ŷ, on the strength of the correlation of z with x and y. The obvious modifications
in (3) and (4) apply when the samples are independent.

It works out that the matrix Bo can be written as Bo = Cov(X̂ , Ẑ)[Var(Ẑ)]−1, where

X =

(
X1 0 0
0 Y2 Z2

)
, Z =

(
−Z1

Z2

)
,

and then an estimated optimal B̂o
takes the form B̂o

= (X ′
Λ0Z)(Z ′Λ0Z)−1, where

Λ0 = {(πkl − πkπl)/πkπlπkl}, and πk, πkl are first-and-second order inclusion prob-
abilities. The matrix Λ0 is associated with the combined sample S = S1 ∪ S2, and
for independent samples reduces to the block-diagonal matrix diag{Λ0

i }, with Λ0
i asso-

ciated with Si. With this estimated B̂o
, the right hand side of (2) is written as X̂ −

X ′
Λ0Z(Z ′Λ0Z)−1Ẑ = X ′

[w + Λ0Z(Z ′Λ0Z)−1(0 − Z ′w)], where w is the vec-
tor of design weights of the combined sample S. It appears that the estimated BLUE in
(2) has the form of a calibration estimator, with vector of calibrated weights c = w +
Λ0Z(Z ′Λ0Z)−1(0 − Z ′w) that implies a zero difference between the two estimates of
the total tz. Indeed, it can be shown that the vector c minimizes the generalized least-
squares distance (c − w)

′
(Λ0)−1(c − w) while satisfying the constraint Z

′
1c1 = Z

′
2c2,

where the subvector ci corresponds to sample Si. We may now write the estimated BLUE
formally as a calibration estimator, X̂B

= X ′
c, and its three components as X̂B =

X
′
1c1, ŶB = Y

′
2c2 and ẐB = Z

′
1c1 = Z

′
2c2. Notice that the vector c can be writ-

ten in the “residual” form c = (I − PZ)
′
w, where PZ = Z(Z ′Λ0Z)−1Z ′Λ0, so

that X̂B
= [(I − PZ)X ]

′
w, and thus the estimated large sample variance of X̂B

is
V̂ar(X̂B

) = [(I − PZ)X ]
′
Λ0(I − PZ)X = X ′

Λ0(I − PZ)X . Notably, by defining
w, X , Z and Λ0 at population level, the BLUE has the same form of calibration estimator
as above.

The formulation of BLUE based on (2) has many advantages over the original form in
(1). Explicit forms of estimates and variances show the difference between the BLUE,s
and the simple HT estimators, as well as their relative efficiency. The computations of the
estimators and their estimated variances is considerably easier. Importantly, any estimate is
obtained in simple linear form as a weighted sum of the sample values of the corresponding
variable, as in common practice in survey sampling. The established calibration property
of the BLUE implies that estimates of totals for the common variables are consistent across
surveys, often a desired property in the integration of survey data.

The two surveys may include vectors of auxiliary variables, xa and ya respectively, for
which the vectors of population totals txa and tya are known. For improved efficiency, this
auxiliary information is incorporated in the BLUE by including txa − X̂a and tya − Ŷa

in the right hand side of (1), or (2). The resulting estimator is generated by a calibration



procedure that includes the constraints X̂B
a = txa and ŶB

a = tya , having the design ma-
trix Z augmented by the block-diagonal matrix D = diag{Xa,Ya}, with corresponding
vector of calibration totals (0

′
, t
′

D)
′
, tD = (t

′
xa
, t
′
ya
). An equivalent form of the BLUE

has the HT estimators in the right hand of (1) replaced by the optimal regression estimators
X̂OR, ẐOR

1 , ŶOR, ẐOR
2 , where, for example, X̂OR = X̂+Cov(X̂, X̂a)[Var(X̂a)]

−1[txa −
X̂a] and ẐOR

1 = Ẑ1 + Cov(Ẑ1, X̂a)[Var(X̂a)]
−1[txa − X̂a]; for a discussion of the op-

timal regression estimator, see Montanari (1987) and Rao (1994). The calibration form
of the BLUE is then X̂B

= X ′
c, where c = ca + L0Z(Z ′L0Z)−1(0 − Z ′ca] with

ca = w + Λ0D(D′Λ0D)−1[(t
′

D − D′w], and where L0 = Λ0(I − PD) with PD =

D(D′Λ0D)−1D′Λ0.
Although the calibration procedure substantially facilitates the computation of the es-

timated BLUE of any total of interest, especially when the number of variables is large or
when there are more samples involved, the matrix Λ0 makes the calculations quite labori-
ous, particularly for dependent samples. Besides, the probabilities πkl are not known for
most complex sampling designs. Approximate forms of Λ0 that bypass this difficulty may
well be used, provided that the approximate matrix is positive-(semi)definite. A computa-
tionally very convenient, but generally suboptimal, approach involves replacing Λ0 with the
diagonal ‘weighting matrix’ Λ having wik/qik as ikth diagonal entry, where {wik} are the
design weights of Si and {qik} are positive constants. This gives the composite generalized
regression (CGR) estimator of (t

′
x, t

′
y, t

′
z)
′
, which has the form of (2), but with the sam-

ple regression coefficient B̂ = (X ′
ΛZ)(Z ′ΛZ)−1 in place of B̂o

. Note that B̂ minimizes
(X−ZB′)′Λ(X−ZB′), whereas B̂o

minimizes (X−ZB′)′Λ0(X−ZB′). In calibration
form this estimator, X̂CGR

= X ′
c, has calibration vector c = w + ΛZ(Z ′ΛZ)−1(0 −

Z ′w). The value of qik in the entries of Λi should be set to qik = ñi/(ñ1 + ñ2), where
ñi = ni/di, di denoting design effect, to take into account the differential in effective sam-
ple sizes between the two samples. If the same design is used for all samples, then ñi = ni.
The justification for this adjustment is based on an argument given in Merkouris (2010).

2.2 A matrix sampling example

In this setting of data integration, see Chipperfield and Steel (2009) and Merkouris (2013),
all three vectors of variables x, y and z are surveyed in an additional third sample S3, and
thus an additional HT estimator can be constructed for each of the totals tx, ty and tz. In
analogy to (1), the BLUE in this case is

(X̂B′ , ŶB′ , ẐB′)
′
= P(X̂

′
1, Ẑ

′
1, Ŷ

′
2, Ẑ

′
2, X̂

′
3, Ŷ

′
3, Ẑ

′
3)
′
,

and in line with the formulation of Section 2.1 it can be written in regression form as

(X̂B′ , ŶB′ , ẐB′)
′
= (X̂

′
3, Ŷ

′
3, Ẑ

′
3)
′
+B[(X̂1 − X̂3)

′
, (Ẑ1 − Ẑ3)

′
, (Ŷ2 − Ŷ3)

′
, (Ẑ2 − Ẑ3)

′
]
′
, (5)

with optimal Bo = −Cov(u3,u12 − u?
3)[V(u12 − u?

3)]
−1, where u3 = (X̂

′
3, Ŷ

′
3, Ẑ

′
3)
′
,

u?
3 = (X̂

′
3, Ẑ

′
3, Ŷ

′
3, Ẑ

′
3)
′
, u12 = (X̂

′
1, Ẑ

′
1, Ŷ

′
2, Ẑ

′
2)
′
. It can be shown after some matrix

algebra that the estimated Bo is given by

B̂o
= (X ′

3−Λ0X )(X ′
Λ0X )−1,

where

X =

 −X1 −Z1 0 0
0 0 −Y2 −Z2

X3 Z3 Y3 Z3

 ,



is the design matrix for the estimator (5), X 3− is the matrix X with the second column
eliminated and the first two rows set equal to zero, and Λ0 is now associated with the com-
bined sample S = S1 ∪ S2 ∪ S3. The estimator (5) can be conveniently obtained through
a calibration procedure that generates a vector of calibrated weights for the combined sam-
ple S, given by c = w + Λ0X (X ′

Λ0X )−1(0 − X ′
w), and satisfying the constraints

X
′
1c1 = X

′
3c3, Y

′
2c2 = Y

′
3c3 and Z

′
1c1 = Z

′
2c2 = Z

′
3c3. Expression (5) is then obtained

simply as X ′
3−c, based only on sample S3. Replacing the matrix Λ0 in B̂ and c with the

weighting matrix Λ, gives the CGR estimator and its calibration equivalent, respectively.

3 The efficiency of the calibration estimators

The calibration estimators of the previous section, the construction of which requires knowl-
edge of Λ0, are asymptotically BLUE. For their linear form, they make the most efficient
use of the available information in the integrated data.

The multivariate composite estimation for all components of the common vector z,
through the simultaneous calibration that aligns estimates from different surveys, may real-
ize additional efficiency due to the correlations among the components of z. This is unlike
the single-sample setting, where estimation for any single variable may borrow strength
only from auxiliary variables with known totals. Thus, in the context of Section 2.1, let
Ẑi1 and Ẑi∗ denote the HT estimators for the first component and for the remaining com-
ponents of z, respectively, based on sample Si. When the two samples are independent, it
can be shown (proof omitted) that the composite estimator ẐB

11 (equal to ẐB
21 by construc-

tion) is less efficient if only the first component of z is involved in the composition, unless
Cov(Ẑ11, Ẑ1∗)/Var(Ẑ11) = Cov(Ẑ21, Ẑ2∗)/Var(Ẑ21). Since the quantities on each side of
this equation are regression coefficients, the equation holds only if the effect of the regres-
sion of the first component of z on the rest is identical in samples S1 and S2. This can hap-
pen only if the sampling designs for the two samples are identical, including equal sample
sizes, or only if the sampling design across samples is the same design with equal inclusion
probability for all units, but not necessarily with the same sample size. The equation will
not hold if the composite estimation incorporates auxiliary variables with known totals that
are not identical in the two samples, owing to the associated differential regression effect.
This effect will be accounted for by the proposed composite estimation method. Essentially
the same property manifests itself in the composite estimation of section 2.2. Remarkably,
the composite estimator ẐB may then realize additional efficiency due to correlation of z
with x and y, although it incorporates all information on z available in the three samples.
Indeed, it can be shown (Merkouris 2013) that the coefficients of the terms X̂1 − X̂3 and
Ŷ1 − Ŷ3 in (5) are zero only if [Var(Ẑ1)]

−1Cov(X̂1, Ẑ1) = [Var(Ẑ3)]
−1Cov(X̂3, Ẑ3) and

[Var(Ẑ2)]
−1Cov(Ŷ2, Ẑ2) = [Var(Ẑ3)]

−1Cov(Ŷ3, Ẑ3).
In general, the computationally simpler CGR estimator, involving the coefficient B̂, is

less efficient than the estimated BLUE. On the other hand, the estimated BLUE may be
unstable in small samples, when there is a small number of degrees of freedom available
for the estimation of B̂o

. This is akin to the issue of relative stability of the optimal versus
the generalized regression estimator in the single-sample case; see Rao (1994) and Mon-
tanari (1998). For certain sampling strategies, B̂ = B̂o

and the CGR estimator is then
the estimated BLUE. Proof of this property is offered in Merkouris (2013) for stratified
(and unstratified) simple random sampling and Poisson sampling, with appropriate values
in each case for the constants qik in the entries of Λ.



4 Conclusion

The described estimation method for integrating information from different surveys in-
volves a single-step calibration of the weights of the combined sample. Thus, using a single
set of calibrated weights that incorporate all the available information from all samples,
an improved estimate of the total for any variable, common or uncommon to the various
surveys, can be obtained by using the units of only one of the samples containing the partic-
ular variable. These weights could be used to calculate other weighted statistics, including
means, ratios, quantiles and regression coefficients. Composite estimates for domains of
interest may be readily obtained by summing the weighted values of a variable over any of
these domains. A simple modification of the calibration procedure that leads to more ef-
ficient composite estimation for domain totals of interest involves the augmentation of the
design matrix with columns for the relevant variables defined at the domain level.

Estimation of the variance of an estimated BLUE, or of an CGR estimator, may, in prin-
ciple, be based on the Taylor linearization technique. This approach requires calculations
that are often not practical, or even feasible when the joint inclusion probabilities are not
known. Replication methods for variance estimation, such as the jackknife method or the
bootstrap method, could then be employed. For example, the jackknife method, customar-
ily used in surveys with stratified multistage sampling design, can be adapted to replicate
the calibration procedures that give rise to these composite estimators. This is fairly simple
when the combined samples are independent, but rather complicated otherwise.

The proposed calibration approach may be readily extended to more complex settings of
data integration, making more evident the operational power of the calibration procedure;
the crucial step is to determine the design matrix. It may also encompass other, more
traditional, settings of data integration, such as multiple-frame and two-phase sampling
designs.
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