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Abstract
Replacing a traditional census with an administrative census requires finding new
ways of (i) generating population estimates, and (ii) assembling individual-level
socioeconomic data. We describe Bayesian methods under development at Statis-
tics New Zealand for dealing with both problems. Population estimation is carried
out by setting up a large model containing a demographic account, models of
the demographic processes, and models of the measurement processes. Coverage
errors in individual-level administrative data are addressed using multiple imputa-
tion, based on output from the population estimation model.
Keywords: Bayesian, official statistics, demography, multiple imputation, miss-
ing data

1 Introduction

A traditional census provides an authoritative count of the population, disaggregated
by basic demographic variables such as age, sex, and region. In countries that have a
traditional census, population data from the census are a key input to population estima-
tion. Population estimates have many uses, from allocating health funding to targeting
housing investment. Any scheme to replace a traditional census with one based purely
on administrative data needs to include a method for constructing accurate population
estimates (Bycroft, 2013; Office for National Statistics, 2013).

A traditional census also yields an individual-level dataset covering almost every
resident of the country. This dataset includes, in addition to basic demographic vari-
ables, a range of socio-economic information on matters such as education, occupation,
and family status. The individual-level dataset, like census-based population counts, has
a wide range of uses, from sociological analyses to market research. Any scheme to re-
place a traditional census would have to include a method for generating an equivalent
individual-level dataset from administrative data (Bycroft, 2013; Office for National
Statistics, 2013).

In this paper, we describe some new Bayesian population estimation methods that
help with both problems: the construction of population estimates, and the construction
of an individual-level socioeconomic dataset.

2 Population estimation

In the absence of a traditional census, population estimation has to rely on multiple
noisy administrative datasets. Traditional demographic methods break down when con-
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Figure 1: Bayesian population estimation. See the text for an explanation of the notation.
Squares represent observed quantities, circles represent unobserved quantities, and arrows rep-
resent probabilistic relationships.

fronted with this type of data. In this section, we describe an alternative approach to
population estimation that is being developed at Statistics New Zealand. A more de-
tailed description is given in Bryant and Graham (2013). Figure 1 summarizes the
framework.

At the core of the framework is a demographic account Q. The account consists
of counts of people and events, linked by accounting identities. An account might, for
instance, contain counts of births, deaths, international migrations, and population, all
disaggregated by age, sex, region, and time, and all consistent with the identity that
population at the end of the period equals population at the beginning plus births minus
deaths plus net migration. We treat Q as latent or unobserved.

Entries within Q typically exhibit strong regularities. For instance, deaths follow a
characteristic age profile. The model of the demographic account, θQ, captures these
regularities. Often there are auxilliary data ZQ that can assist with the estimation of
parameters within θQ. Data on regional income levels, for instance, can help explain
variation in regional mortality rates.

Data sources X1, . . . ,XK consist of counts of people or events, or of proxies for these
counts. Examples include traditional sources such birth registrations, and more exotic
sources such as tax data. A single data source Xk may have been assembled by linking
together several sets of administrative data. Models θ1, . . . ,θK capture the relationships
between the demographic account and the data sources. Datasets Z1, . . . ,ZK contain
information that help explain variation in the relationship between account and data.
For instance, data on housing type might explain variation in converage rates. If a
coverage survey was taken for one of the Xk, data from this survey could be included in
Zk.

Inference is carried out via Markov chain Monte Carlo methods. A Gibbs sampler
alternates between the full conditional distributions for Q, θQ, and θX . Sampling from
the distribution for Q is difficult because of the presence of the accounting identities;
sampling from θQ and θX can be done using standard methods.

The approach offers some important advantages over traditional methods:
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Figure 2: Population estimates for a single region of New Zealand. The black lines represent
median estimated counts, and the grey bands represent 95% credible intervals. Uncertainty is
low in 2006, a census year, higher in 2008, and higher again in 2011.

• Random variation in the demographic series and in the measurement of these
series are properly accounted for.

• Detailed measures of uncertainty are produced.

• Extra datasets or extra dimensions can be easily be added.

• Missing or irregular data are accommodated naturally.

A prototype of the model has been built and tested, as described in Bryant and
Graham (2013). Work is currently underway on software that is faster and more flexible
than the prototype. Some illustrative results from the model are shown in Figure 2.

If a data source, say X1, was very high quality, would the population estimation
model be redundant? If X1 included all the variables that the users of population esti-
mates required, if it defined the population in the appropriate way, and if it was error-
free, then population estimates could be read straight off it, and no population estimation
model would be needed. If X1 had minor errors, then the choice of whether to model
or not would be less obvious. On the one hand, modelling requires extra work, and
introduces errors of its own because of simplifying assumptions. On the other hand,
any improvement in the accuracy of X1 should lead to improvements in the accuracy of
the model estimates. Moreover, the model can exploit additional information contained
in the other Xks and in the Zks, as well as taking account of demographic plausibility.

Outside of Scandanavia, most administrative datasets are likely to have large enough
errors for modelling to be worthwhile. New Zealand, for instance, has unusually accu-
rate data on births, deaths, and international migration, and has made rapid progress
in linking together administrative datasets. However, most administrative datasets in
New Zealand do not share a common personal identifier, and no administrative dataset
covers all New Zealand residents. Moreover, data on residential addresses are generally
poor (Gibb, 2013). The result is that all administrative datasets in New Zealand, linked
or otherwise, miss eligible people, include ineligible people, and have missing data for
important variables.



3 Producing an individual-level dataset

Under a traditional census, individual-level socioeconomic data are obtained by requir-
ing everyone in the country to fill out a questionnaire. Under an administrative census,
individual-level socioeconomic data are obtained by cleaning and linking administrative
and survey datasets until enough of the desired variables are included, and coverage of
the population is sufficiently high. As discussed above, almost all such datasets are sub-
ject to under-coverage, over-coverage, and missing values. If users were to analyse one
of these datasets in its uncorrected form, they could easily be misled. An analysis of
the assimilation of migrants, for instance, could easily go astray if the individual-level
dataset incorrectly included migrants who had returned to their home country. To ad-
dress these problems, statistical methods are needed. We are currently developing one
such method, based on an extension of our population estimation model.

Let X1 be the original individual-level dataset with the coverage errors and missing
values. Let X true

1 be the dataset we would like to have, containing no coverage errors or
missing values. We get from X1 to X true

1 in two steps: we correct for coverage errors,
and then we fill in the missing values. Let Xcov

1 be a dataset that has been corrected for
coverage errors, but not for missing values. Using Xobs to denote X1, . . . ,Xk, we have

p(X true
1 |Xobs,Z) =

∫
p(X true

1 |Xcov
1 ,Xobs,Z)p(Xcov

1 |Xobs,Z)dXcov
1 (1)

=
∫∫

p(X true
1 |Xcov

1 ,Q,Xobs,Z)p(Xcov
1 |Q,Xobs,Z)p(Q|Xobs,Z)dXcov

1 dQ.

(2)

Values for X true can be obtained by

1. drawing a value for Q, conditional on Xobs and Z;

2. drawing a value for Xcov, conditional on Q, Xobs, and Z; and

3. drawing a value for X true, conditional on Q, Xobs, Xcov, and Z.

Drawing values for Q can be done using the methods sketched out in Section 2.
Drawing values for X true can be done using standard methods for multiple imputation
of missing data (Rubin, 1996). The imputation models would have available to them
all the information in Q, Xobs, and Z. Drawing values for Xcov is less standard, and the
approach would need to be adapted to the data at hand.

Drawing values for Xcov is easiest when an ‘included-at-random’ assumption is
made: when it is assumed that, within each cell defined by Q, individuals are miss-
ing from X1, and erroneously included in X1, at random. This assumption can be made
plausible by incorporating into Q as many variables as possible that are associated with
coverage.

Having made an ‘included-at-random’ assumption, a simple way of obtaining Xcov,
for a given value of Q, would be to add or remove individuals until all cell counts
in the corrected version of Xobs

1 matched the corresponding counts in Q. Individuals
could be added by creating records with missing values on all variables except the vari-
ables used to define the cell. Missing values could be filled in when drawing from
p(X true|Xcov,Q,Xobs,Z). Individuals could be deleted by removing randomly-selected
records.

The method for obtaining Xcov could be further refined to take advantage of extra
information in Z. For instance, if Z included data from a coverage survey, it might be
used to give better predictions on the types of people likely to be missing. If Z included
information on patterns of misclassification, it might be possible align cell counts in



X1 and Q by randomly moving individuals between cells, as well as randomly adding
and deleting. This would allow more of the original socioeconomic data in X1 to be
preserved.

The final product would be a set of M versions of X true that could be treated like any
other multiply-imputed dataset. Each individual X true could be analysed using ordinary
complete-data methods, with the results for all X true being combined at the end (Rubin,
1996). With cheap computing power and the proliferation of software for multiply-
imputed data, the practical obstacles to using such data are much smaller than they once
were. The pay-off is sounder inferences than are possible with an uncorrected X1 or a
single corrected X1.

4 Discussion

Fienberg (2011) and Little (2012) argue that Bayesian methods deserve a larger place
in the production of official statistics. Both authors draw their examples mainly from
surveys. Statistical methodologies for administrative data, Bayesian or otherwise, are
still at an early development stage. However, we suspect that the arguments for bringing
Bayesian methods into official statistics will turn out to be even stronger for adminis-
trative data than they are for survey data.

When making inferences from survey data, the biggest source of uncertainty is of-
ten sampling variability. When inferring from administrative data, the sources of uncer-
tainty are more diverse, ranging from linkage errors, to misaligned target populations, to
reporting lags (Zhang, 2011). Bayesians can represent all these sources of uncertainty
in the same way, via probability distributions. Expert judgment about likely biases, for
instance, can be captured in the form of prior distributions (Greenland, 2005).

It is rare for a single administrative source to contain all the information that a sta-
tistical office needs. Using administrative data typically means combining information
from several datasets. A classic example of combining of information is record linkage.
However, as illustrated in this paper, other types of linkage are also possible and useful.
All of the Xs and Zs in Figure 1, for instance, are linked in the sense that they influence
each others’ data models, via their influence on Q. This sort of general ‘information
linkage’ poses no special difficulties within a Bayesian framework. Likelihoods are de-
rived and multipled together, and then combined with prior distributions, much as in the
case of a single data source. Bayesian methods are a natural way to deal with multiple
imperfect administrative datasets.
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