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Abstract
Allocation of funds to high poverty regions, development of language-specific bal-
lots, prioritization of public health interventions and environmental remediations in
small areas, profiling health service providers, comparative evaluation of school ef-
fectiveness, gene and SNP identification studies; all depend on the relative position
(ranks) of unit-specific parameters. Invalid or sub-optimal ranks can have serious
scientific, policy and financial consequences. Ranking is challenging because intu-
itive approaches tend to perform poorly. Happily, Bayesian structuring coupled with
a ranking-specific loss function has proven very effective. We outline the Bayesian
approach, discuss simulation evaluations, and analyze Standardized Mortality Ra-
tios.
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1 Introduction
The inferential goal is to rank underlying parameters based on observed data. Rank-
ing is challenging because relatively high variance MLEs tend to be extreme, while
Z-scores testing that a unit’s underlying parameter is equal to the typical value tend
to be relatively close to zero for these units. The Bayesian approach guided by a
ranking-specific loss function provides the necessary structure to strike an effective
compromise. Recent articles on ranking include, Dyer and Owen (2012); Gelman
and Price (1999); Lockwood et al. (2002); Normand and Shahian (2007); Ohlssen
et al. (2007); Shen and Louis (1998)

2 Loss Function Based Ranking
Consider the two-stage, hierarchical model with a continuous prior distribution. For
k = 1, . . . ,K,

θk
iid∼ G; [Yk | θk]

indep∼ fk(Yk | θk)

[θk | Yk] ∼
fk(Yk | θk)g(θk)
fk(Yk | u)g(u)du

The ranks, R (= R1, . . . , RK) are: Rk = rank(θk) =
∑K

j=1 I{θk≥θj}, where I{·} is the
indicator function. The smallest θ has rank 1. To keep all estimates in the interval
(0, 1) we use percentiles, with Pk = Rk/(K+1). The Rk and Pk are invariant under
a monotone transform of the θk and estimated ranks should also be invariant.

Squared-error loss (SEL) minimizing ranks
The posterior mean of the target quantity minimizes SEL, producing R̄k = E[Rk |
Y] =

∑K
j=1 P [θk ≥ θj | Y], P̄k = R̄k/(K + 1). The R̄k are not integers and do not

span the full range [1,K]. To obtain optimal integer ranks, rank the R̄k, producing:
R̂k = rank(R̄k), P̂k = R̂k/(K + 1)

2.1 A threshold-specific loss function
Assume we want to correctly identify the top (1 − γ) units, 0 < γ < 1. Lin et al.
(2006) propose using a loss function that penalizes for misclassification,

OCP est(γ | Y) =
pr(P ≤ γ | P est > γ,Y)

γ
.



When the data are completely uninformative, OCP est(γ | Y) = 1.0 and so is stan-
dardized across γ values. If the goal is to identify units with the largest percentiles,
then the numerator is similar to the False Discovery Rate (Benjamini and Hochberg
(1995), Efron and Tibshirani (2002).

Let, πk(γ | Y) = pr(Pk > γ | Y), then OCP est(γ) is minimized by R̃k(γ) =
rank(πk(γ)), P̃k(γ) = R̃k(γ)/(K + 1), but computing the πk is extremely computer
intensive. Fortunately, as Lin et al. (2006) show, the P̃k(γ) are virtually identical to
ranks based on exceedance probabilities pr(θk > tγ | Y) with tγ = Ḡ−1

K (γ), where
ḠK(t) = 1

K

∑
k pr(ρk ≤ t | Y). Normand et al. (1997) rank providers using ex-

ceedance probabilities, and Diggle et al. (2007) use them to identify the areas with
elevated disease rates.

For any percentiling method, OCP est(γ | Y) provides a data analytic performance
evaluation, computed by summing πk(γ | Y) = pr(Pk > γ | Y) over the set of indices
for which P est > γ. Plotting the πk(γ | Y) versus the P estk displays percentile-
specific, classification performance. This plot is similar to that proposed by Pepe
et al. (2008).

3 Gaussian-Gaussian Simulation
We use the model,

θk|G
iid∼ N(0, 1); [Yk|θk, σ2

k]
indep∼ N(θk, σ2

k) (1)

and set scenarios using variances {σ2
k} that form an ordered, geometric sequence

with gmv = GM(σ2
1, . . . , σ

2
K) (informativeness of the data) and rls = σ2

K/σ
2
1 (het-

erogeneity of the variances). Table 1 reports SEL performance (see Lin et al., 2006);
when rls = 1 (σ2

k ≡ σ2) all ranking methods have identical performance, but for
rls > 1 the optimal percentiles (P̂k) perform notably better than ranking the pos-
terior means θpmk , ranking the posterior mean of eθk , or ranking the Yk.

percentiles based on

rls P̂k θpmk E(eθk | Yk) Yk

1 31.0 31.0 31.0 31.0
25 31.0 31.0 32.0 34.9

100 31.3 31.5 32.8 38.6

Table 1: Simulated preposterior 100×SEL/1666 for gmv = 1.
For uninformative data (σ2

k ≡ ∞) SEL = 1666.

4 Ranking Standardized Mortality Ratios
The Standardized Mortality Ratio (SMR) is the ratio of observed to expected deaths.
The United States Renal Data System (USRDS) produces annual estimated SMRs
for several thousand dialysis centers and uses these as a quality screen (ESRD, 2000),
USRDS (2005)). We report selected results for the K = 3173 dialysis centers that
reported data for the four years 1998-2001 (see Lin et al., 2009, for full details). Let
(Ykt,mkt) be the observed and case-mix adjusted, expected deaths for provider k in
year t, k = 1, . . . 3173, t = 0, 1, 2, 3 and ρkt be the SMR. Then,

[Ykt | mkt, ρkt] ∼ Poisson(ρktmkt) (2)

E(Ykt | mkt, ρkt) = mktρkt = mkt × eθkt

“Average performance” is equivalent to ρkt = 1, θkt = 0.



4.1 Single-year Analyses
For year t, θkt

iid∼ Gt, k = 1, . . . , 3173, with Gt either a normal distribution or the
non-parametric maximum likelihood (NPML) prior (see Carlin and Louis, 2009;
Paddock et al., 2006).

4.2 The Longitudinal, AR(1) Model
Let φ = cor(θk,t, θk(t+1)), with −1 < φ < 1. Then, use a normal prior on the θkt and
a normal prior on Z(φ) = 0.5 log{(1 + φ)/(1− φ)} in the hierarchical model,

ξt
iid∼ N(0, V ), λt = τ−2

t
iid∼ Gamma(α, µ/α)

Z(φ) ∼ N(0, Vφ) (3)

[θ10, . . . , θK0 | ξ0, τ0] iid∼ N(ξ0, τ2
0 )

[θkt|θk(t−1), . . . , θk0, ξ, τ, φ] ind∼ N
(
ξt + φτtτ

−1
t−1{θk(t−1) − ξt−1}, {1− φ2}τ2

t

)
(4)

[Ykt | mkt, ρkt] ∼ Poisson(mktρkt), ρkt = exp(θkt).

Marginally, for year t, θkt iid N(ξt, τ2
t ) and setting φ = 0 produces four, single-year

analyses, each using model 2 with no borrowing of information over time. For φ > 0,
in addition to combining evidence across centers in a single year, an AR(1) model
combines evidence within a dialysis center across years.

4.3 Performance measures
Using the 1998 data, we compute the relations between optimal percentiles and other
candidate approaches, and compute OCP est(0.80) and a measure of longitudinal
variation (LV) for both single and multiple years, with,

LVP est = 1000× 1
3K

K∑
k=1

3∑
t=0

(P estkt − P estk• )2,

where P estkt is the estimated percentile for dialysis center k in year t and P estk• is the
mean over the four years.

4.4 Comparisons using the 1998 data
We computed ranks and percentiles based on the MLEs (ρmlek ), the posterior means
(ρpmk ), Z-scores testing the hypothesis H0 : ρ = 1 for 1998) and the optimal P̂k,
P̃k(γ). The MLEs and Z-scores are,

ρmlek =
Yk
mk

, Zk =
√
mk log

(
yk
mk

+ 0.25
)
, ρpmk = E(ρk | Y). (5)

Figure 1 displays estimates for the 40 providers at the 1/3174, 82/3174, 163/3174,
. . ., 3173/3174 percentiles as determined by P̂k. For each display, the Y-axis is
100 × P̄k with its 95% posterior interval. The X-axis for the upper left panel is P̂ ,
for the upper right is percentiles based on ρpm, for the lower left is percentiles based
on ρmle, and for the lower right is percentiles based on Z-scores testing ρk = 1.

In the upper left display the P̄k do not fill out the (0, 1.0) percentile range; they are
shrunken toward 0.50 by an amount that reflects estimation uncertainty. Also, the
posterior probability intervals are very wide, indicating considerable uncertainty
in estimating ranks/percentiles. The plotted points in the upper left display are
monotone because the X-axis is the percentile based on ranking of Y-axis values.
Plotted points in the upper right display, which are based on posterior mean, are
almost monotone and close to the best attainable. The lower left and lower right
panels show considerable departure from monotonicity, indicating that MLE-based



ranks and hypothesis test-based ranks are very far from optimal. Note also that
the pattern of departures is quite different in the two panels, showing that these
methods produce quite different ranks. Similar comparisons for SMRs estimated
from the pooled 1998-2001 data would be qualitatively similar, but the departures
from monotonicity would be less extreme.

4.5 Multi-year analyses
Using model (3) we estimated single-year based and AR(1) model based percentiles.
Table 2 reports that the ξ are near 0, as should be the case since we have used internal
standardization (the typical log(SMR) = 0). The within year, between provider
variation in 100 × log(SMR) is essentially constant at approximately 100 × τ =
24, producing a 95% a priori interval for the ρkt (0.62, 1.60). While we have a
prior centering around 1000 for 100 × τ , the data likelihood dominates the prior
information and the posterior 95% credible interval of 100 × τt for all 4 years is
(22.8,26.8). Use of the AR(1) model to combine evidence over years (with the
posterior distribution for φ concentrated around 0.90) reduces 100×OCp̃(0.8) from
around 61 to around 48, a 20% decrease. Classification performance comparison
using the P̂k is very close to that for the optimal 100 × P̃k(0.8). Longitudinal
variation in ranks/percentiles (LVP est) is dramatically reduced for the AR(1) model
going from 62 for the year-by-year analysis to 4 for the multi-year. As a basis for
comparison, if φ→ 1, LVP̂ → 0 and if the data provide no information on the SMRs
(the τ →∞), then LVP̂ = 83.

Figure 2 displays two classification curves. In the upper range of P̃k(0.8), the curve
for the AR(1) model lies above that for the single year, in the lower range it lies
below. For the AR(1) model to dominate the single year at all values of P̃k(0.8),
the curves would need to cross at P̃k(γ) = 0.8, but the curves cross at about 0.7.
Performance when the NPML replaces the Gaussian distribution for the θ very
similar. Interestingly, the NPML is bimodal with a secondary mode at θ = 0.5; ρ =
1.65, possibly indicating two populations of dialysis centers.

5 Discussion
We have outlined an approach to optimal ranking, but caution that “even the best
of the breed can still be a dog.” Therefore, uncertainties and performance measures
{OCP est(γ), πk(γ | Y)} must also be reported. The πk(γ | Y) can be used to can
be used to temper penalties or rewards. The OCP̃k(γ)(γ) minimizing percentiles
optimize that goal, but the SEL minimizing percentiles perform well over a broad
range of γ values and so are general-purpose. The AR1 model and generalizations
are very effective in combining evidence over time and can help stabilize estimates
and ranks reported by the American Community Survey and other data products
in which the direct information is low.

Percentiles are prima facie relative comparisons in that it is possible that all providers
are doing well or that all are doing poorly; percentiles will not pick this up. In situ-
ations where normative values are available (e.g., death rates), percentiles that have
a normative interpretation are attractive and those based on posterior probabilities
of exceeding some threshold (P ∗(γ)) provide an excellent link to a substantively
relevant scale. Finally, in a policy setting it is important to report one set of esti-
mates that can be used for a variety of purposes. The Shen-Louis (Shen and Louis,
1998) “triple goal” estimates have ranks that are optimal, produce a histogram that
is optimal, and the point estimates perform nearly as well as the posterior mean.
These should be given serious attention in a policy context.
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Single Year: (φ ≡ 0) Multi-Year: (100 × φ ∼ 8890 92)
Parameter 1998 1999 2000 2001 1998 1999 2000 2001

100× ξ -2.8 -1.3 -2.3 -0.7 -3.1 -0.8 -1.7 -0.3
100× τ 24.1 23.5 23.1 22.2 25.8 25.0 24.9 24.1

100×OCP̃ (0.8)(0.8) 62 61 60 62 49 47 46 50

LV(P̂k) 62 4

Table 2: Results for P̂k and P̃ (0.8). In the multi-year section, 100 × OCP̃ (0.8) is for the
indicated year as estimated from the multi-year model and 8890 92 is a notation for posterior
median 90 and 95% credible interval (88, 92).
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Figure 1: SEL-based percentiles for 1998. For each display, the Y-axis is 100 × P̄k with its 95%
probability interval. The X-axis for the upper left panel is P̂ , for the upper right is percentiles based on
ρpm, for the lower left is percentiles based on the ρmle and for the lower right is percentiles based on
Z-scores testing ρk = 1.
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Figure 2: πk(0.8 | Y) versus P̃k(0.8) for 1998. Optimal percentiles and posterior probabilities

computed with the single year model (φ ≡ 0) and the AR(1) model (φ̂ = 0.90). Two curves
don’t cross at γ = 0.8. The line for fully informative data, i.e., when there is no uncertainty
associated with ranking results is given as reference.
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