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Abstract

We study a sparse estimation in functional linear regression model for functional response
where the regression coefficient function is generated by a finite number of basis functions.
In a similar perspective to variable selection, we construct a sparse basis representation for
the coefficient function using penalized least squares method. We simultaneously estimate
the regression parameters and select basis functions by two-step procedure. For a given
basis, we show that our approach consistently identifies true subset of basis so that the
resulting estimator achieves

√
n-consistency for the regression parameters.

Keywords: Functional linear regression, basis selection, penalized least squares estima-
tion, group variable selection

1. Introduction

Suppose that a functional response Y is related to a functional covariate X through

Y (t) = µY (t) +

∫ 1

0
α(s, t)(X(s)− µX(s)) ds+ ε(t), t ∈ [0, 1], (1.1)

where µY = EY , µX = EX , α is the regression coefficient function and ε is a noise
process. Typically, the regression coefficient function α is estimated by the least squares
method through functional principal component analysis or penalized least squares method
with smoothness-inducing penalty (Ramsay and Silverman, 2005; Antoch et al., 2008)

Let {φk}k≥1 and {ψm}m≥1 be two basis systems in L2[0, 1]. Now assume that the
regression coefficient function admits a sparse basis representation as follows:

α(s, t) =
∑
k∈K

∑
m∈M

amk φk(s)ψm(t), s, t ∈ [0, 1], (1.2)

for unknown finite index sets K,M ⊂ N. Under the setting (1.2), it is natural to estimate
α by selecting basis functions rather than using a classical estimation in the functional
linear regression literature where the consecutive basis functions are used.

In this paper, we propose a penalized least squares (PLS) method to identify K and M
and estimate the coefficients amk . For this, we adopt group variable selection techniques
(Yuan and Lin, 2006) in a similar manner to Obozinski et al. (2011) for high-dimensional
multivariate linear regression model, but we impose 2-directional penalties on both the
rows and the columns of the basis coefficient matrix of the regression coefficient function
with the consecutive basis functions. The proposed method automatically selects nec-
essary basis functions among the candidate basis system consisting of consecutive basis
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functions. As discussed by James et al. (2009) and Lee and Park (2012), this makes in-
terpretation of the relationship between Y and X much easier as well as improves the
predictability of the functional linear regression model when the regression coefficient
function is exactly zero over some region of domain. Also, when the φk and ψm are
given as B-splines, basis selection for the regression coefficient function corresponds to
knot selection problem. In our development, we only consider the case where the regres-
sion coefficient function is generated by a finite number of given basis functions such as
B-splines or Fourier basis. For finite K and M , we show that our proposed estimator
achieves

√
n-rate of convergence for estimating the regression coefficient function α.

The remainder of the paper is organized as follows. Section 2 introduces our method in
PLS frameworks and Section 3 presents the asymptotic properties of the resulting estima-
tor. Section 4 then provides simulation study to illustrate the finite sample performance of
the proposed method. In Section 5, concluding remarks and further issues are discussed.

2. Methodology

Let X be a square integrable random function satisfying E‖X‖2 < ∞ with the L2-norm
‖ · ‖. Assume that ε is a mean zero process with E‖ε‖2 = σ20 < ∞ and independent
of X . Denote (Yi, Xi), 1 ≤ i ≤ n, to be random copies of (Y,X), generated by the
model (1.1). Without loss of generality, basis functions are considered to have unit norms.
Abusing notations, for A ∈ R|K|,|M |, denote [A]mk = amk to be the (k,m) element of A,
and ak = (amk )m∈M and am = (amk )k∈K to be real arrays according to those elements.

2.1. Penalized least squares method

To estimate the sparse coefficient function in (1.2), we consider a minimization problem
for the integrated least squares criterion

Ln(A) =
n∑
i=1

∫ 1

0

(
Yi(t)− Ȳ (t)−

∑
k∈K

∑
m∈M

amk ζ
i
kψm(t)

)2

dt

with respect to A, where ζik = 〈Xi − X̄, φk〉. For sufficiently large n, one can verify that
the minimizer Ǎ for Ln(A) consists of row vectors {ǎk}k∈K which are the solution of the
system of equations

ǎk =

(
n∑
i=1

(ζik)
2

)−1 n∑
i=1

ζik

Σ−1M ηi −
∑

k′∈K\{k}

ζik′ ǎk′

 , k ∈ K, (2.1)

where ηim = 〈Yi − Ȳ , ψm〉 and ΣM ∈ R|M |,|M | with [ΣM ]m
′

m = 〈ψm, ψm′〉. Since K
and M are unknown, however, (2.1) is impractical. We use sequences of basis functions
{φk}JKk=1 and {ψm}JMm=1 with non-decreasing indices JK and JM as n→∞, but less than
n, to construct a working version of system of equations

b̌k =

(
n∑
i=1

(ζik)
2

)−1 n∑
i=1

ζik

Σ−1JMηi −
JK∑

k′(6=k)=1

ζik′b̌k′

 , 1 ≤ k ≤ JK . (2.2)

This scheme makes the true model be nested in our model for sufficiently large n. Denot-
ing the dimension of ηi in (2.1) by |M | and in (2.2) by JM and a working version of ΣM

by ΣJM , the joint form of estimators {b̌k}JKk=1 is given by

B̌ =
(
ZZ>

)−1
ZH>Σ−1JM (2.3)



where [B̌]mk = b̌mk , [Z]ik = ζik and [H]im = ηim with B̌ ∈ RJK ,JM , Z ∈ RJK ,n and
H ∈ RJM ,n. We call B̌ a working version of the estimated basis coefficient matrix.

The purpose of our study is to construct the sparse representation of coefficient func-
tion (1.2) from data. We adopt penalization methods in multivariate linear regression
models. In the perspective of selecting basis functions, our problem requires a PLS cri-
terion that induces row-wise and column-wise sparsity in (2.3). Based on group variable
selection techniques, we consider the following penalized integrated least squares criterion

Qn(B;λ1, λ2) = n−1Ln(B) +

JK∑
k=1

ω̂k‖bk‖2 +

JM∑
m=1

θ̂m‖bm‖2 (2.4)

where ‖ · ‖2 is the Euclidean norm satisfying ‖b‖22 = b>b and (ω̂k, θ̂m) is a pair of
non-negative penalty weights, possibly random.

The criterion (2.4) covers various types of PLS methods. It forms, for instance, a
compounded criterion of row-wise and column-wise group lasso with fixed (ω̂k, θ̂m) =
(λ1, λ2). The choice of (ω̂k, θ̂m) = (λ1‖b̌k‖−γ12 , λ2‖b̌m‖−γ12 ) with some positive γ1, γ2 >
0 is an applied version of group penalty based on adaptive lasso (Zou, 2006). Moreover,
several non-convex penalties, for example the SCAD (Fan and Li, 2001) and the mini-
max concave penalties (Zhang, 2010) can be approximated by (2.4). To see this, one may
consider a generic form of criterion

Qn(B;λ1, λ2) = n−1Ln(B) +

JK∑
k=1

pλ1(‖bk‖2) +

JM∑
m=1

qλ2(‖bm‖2) (2.5)

for some non-negative, monotone increasing and differentiable penalty functions p and
q. Note that pλ(·) = λ2p(·/λ) can represent the SCAD and minimax concave (MC)
penalties, and (2.5) can be approximated by ω̂k = λp′(‖b̌k‖2/λ) near bk ≈ b̌k. For
theoretical details, see Noh and Park (2010) and Zou and Li (2008).

2.2. Two-step procedure

Technically, optimizing (2.5) with respect to B ∈ RJK ,JM may involve heavy compu-
tational challenges including 2-dimensional grid search to find an optimal pair of regu-
larization parameters (λopt1 , λopt2 ) under non-disjoint penalization effect caused by mixing
row-wise and column-wise penalties.

To avoid an exhaustive 2-dimensional grid search, we consider a two-step procedure.
In the first step, find the solution B̃ that minimizes

1

n

n∑
i=1

∫ 1

0

(
Yi(t)− Ȳ (t)−

JK∑
k=1

JM∑
m=1

bmk ζ
i
kψm(t)

)2

dt +

JK∑
k=1

pλ∗1(‖bk‖2)

with suitable λ∗1. As a result, we have an index set K̂ satisfying b̃mk = 0 unless k ∈ K̂ so
that we select basis functions as {φk; k ∈ K̂}. In the second step, find B̂ that minimizes

1

n

n∑
i=1

∫ 1

0

Yi(t)− Ȳ (t)−
∑
k∈K̂

JM∑
m=1

bmk ζ
i
kψm(t)

2

dt +

JM∑
m=1

qλ∗2(‖bm‖2)

with suitable λ∗2. Similarly, M̂ is given by an index set satisfying b̂mk = 0 unless m ∈ M̂
so that we select basis functions as {ψm;m ∈ M̂}. We take B̂ as our two-step estimator of
B. We use BIC type criterion with approximated degree of freedom proposed by Yuan and



Lin (2006) to choose (λ∗1, λ
∗
2) in each step. Remark that our two-step procedure may not

guarantee an optimal solution of minimizing (2.4). However, as derived in the following
sections, the convergence rate of the second step estimator is dramatically improved by
conditioning K̂ obtained from the first step.

3. Theory

Let (LZ , lZ) be a pair of the largest and smallest eigenvalues of n−1ZZ>, and κZ =
LZ/lZ be the condition number of n−1ZZ>. Also, let (R, r) be a pair of the largest and
smallest eigenvalues of ΣJM , and ρ = R/r be the condition number of ΣJM . For the
weights {ω̂k}JKk=1 and {θ̂m}JMm=1, we assume that

(C1) (i) ω̂k = op(n
−1/2) for all k ∈ K,

(ii) supk 6∈K

{
n−1/2ω̂−1k J

1/2
K J

1/2
M κZρ

}
= op(1),

(C2) (i) θ̂m = op(n
−1/2) for all m ∈M ,

(ii) supm 6∈M

{
n−1/2θ̂−1m J

1/2
M ρ

}
= op(1).

Based on the above conditions, we have the following results.

Theorem 1. Let B̃ be the first step estimator, and K̂ be the corresponding row index set.
Under (C1), we have that

‖b̃k − bk‖2 = Op(n
−1/2J

1/2
K J

1/2
M l−1Z r−1). (3.1)

holds uniformly for k = 1, · · · , JK . Also, P (b̃k = 0 for k 6∈ K)→ 1 as n→∞.

Theorem 2. Let B̂ be the second step estimator, and M̂ be the corresponding column
index set. Under (C1) and (C2), we have that

‖b̂m − bm‖2 = Op(n
−1/2J

1/2
M r−1). (3.2)

holds uniformly for m = 1, · · · , JM . Also, P (b̂m = 0 for m 6∈M)→ 1 as n→∞.

If we take orthonormal bases {φk} and {ψm}, the condition (C1-(ii)) and (C2-(ii)) can
be weakened by supk 6∈K

{
n−1/2ω̂−1k κZ

}
= op(1) and supm6∈M

{
n−1/2θ̂−1m

}
= op(1).

Consequently, the convergence rates in (3.1) and (3.2) are improved up to Op(n−1/2l−1Z )
and Op(n−1/2), respectively.

Since (2.4) is a linear approximation of (2.5), it would be more reasonable, however,
to consider sufficient conditions of penalty function that induce (C1) and (C2). In the case
of pλ1 = λ1p and qλ2 = λ2q, we assume that

(S1) (a) p′(u)−1 = O(uγ) (u→ 0) for some γ > 0 and n1/2λ1 → 0 (n→∞),

(b) n(γ+1)/2λ1J
−(γ+1)/2
K J

−(γ+1)/2
M κ−1Z ρ−1lγZr

γ p−→∞,

(S2) (a) q′(u)−1 = O(uγ) (u→ 0) for some γ > 0 and n1/2λ2 → 0 (n→∞),

(b) n(γ+1)/2λ2J
−(γ+1)/2
M ρ−1rγ →∞ (n→∞).

It can be verified that (S1) and (S2) are sufficient conditions for (C1) and (C2), respec-
tively. In the case of orthonormal basis, (S1-(b)) and (S2-(b)) can be also reduced to
n(γ+1)/2λ1κ

−1
Z lγZ → 0 and n(γ+1)/2λ2 → 0. Note that, these reductions coincide to the

conditions that the adaptive lasso guarantees the oracle properties in the multiple linear
regression setting (Fan and Li, 2001). Similar arguments can be easily extended to the
case of pλ(·) = λ2p(·/λ). See Lee and Park (2012).

Based on Theorem 1 and 2, it is natural to have the following corollary which implies
that our two-step estimator achieves the parametric rate of convergence.



Corollary 3. Under (C1) and (C2), P (b̂km = 0 for (k,m) 6∈ K ×M) → 1 as n → ∞.
Denote Â ∈ R|K̂|,|M̂ | to be a sparse form of B̂ satisfying âmk = b̂mk for (k,m) ∈ K̂ × M̂ .
If |K| and |M | are bounded, we have that

‖Â−A‖HS = Op(n
−1/2)

holds with probability tending to 1, where ‖ · ‖HS is the Hilbert-Schmidt norm.

4. Numerical study

We demonstrate the performance of the proposed method by considering two scenarios of
simulation settings: (i) orthogonal basis, (ii) non-orthogonal basis to construct the sparse
representation of regression coefficient function. Let {fj}j≥1 be the normalized Fourier
basis on [0, 1] except constant function, and denote {f (s)j } and {f (c)j } as follows:

f
(s)
j (u) = f2j(u) =

√
2 sin(jπu), f

(c)
j (v) = f2j+1(v) =

√
2 cos(jπv)

for j = 1, 2, . . .. Let {gj}j≥1 be normalized cubic B-spline basis on [0, 1] with equal
knots. The covariate function X is generated by X =

∑200
j=1 Zjfj where Zj ∼ N(0, j−2).

ForK = {4, 7, 9, 14} andM = {3, 5, 11, 17}, letA ∈ R4,4 be an array of real coefficients
whose elements are as follows:

amk (m=3) (m=5) (m=11) (m=17)
(k=4) 1.5 -1 2 1
(k=7) -1 2 1.5 -1.5
(k=9) 2 1 -1.5 1

(k=14) -1 1.5 1 -2

For the orthogonal case, the response function Y is generated by (1.1) and (1.2) with
µY = µX = 0, φk = f

(c)
k and ψm = f

(s)
m . The noise process ε is assumed to be

ε(t) ∼ N(0, σ20) for each t ∈ [0, 1] with cov(ε(t), ε(t′)) = σ20I(t = t′). We take the same
settings for the case of non-orthogonal basis, except φj = ψj = gj .

We summarize our simulation results in Table 1 and 2. Based on the two-step proce-
dure described in Section 2.2, we repeat simulations 100 times to calculate true positive
(TP) and false positive (FP) basis call numbers for selecting {φk} (1st step) and {ψm} (2nd
step), and report those prediction errors for 100 test sets. We take γ = 1 for the adaptive
lasso type penalty (grAL), and fix γ = 3 for both SCAD and MC type penalties (grSCAD
and grMC). One can choose JK and JM first in a data driven way, but we set JK=JM=30
for simplicity. We do not report here but similar results are obtained under JK=JM=50.
Using the knowledge of K and M , the oracle estimator is given by the solution of (2.1).

Table 1: Performance comparison for orthogonal basis case

TP/FP basis call (1st step) TP/FP basis call (2nd step) Prediction error (× 1E-02)
n σ0 grAL grSCAD grMC grAL grSCAD grMC grAL grSCAD grMC Oracle

100 0.5 3.5/0 3.7/0 2.96/0 4/0 4/0 4/0 0.223 0.235 0.422 0.051
1 1.03/0 1.07/0 0.99/0 4/0 4/0 3.96/0 2.221 2.180 2.251 0.204

200 0.5 4/0 4/0 4/0 4/0 4/0 4/0 0.054 0.054 0.056 0.050
1 3.11/0 3.01/0 2.96/0 4/0 4/0 4/0 0.443 0.459 0.496 0.201

In Table 1 and 2, we see that true basis functions are selected consistently in each
step. Note that, identification of basis functions is dramatically improved in the second
step, than the first, in the sense of calling exact basis. It can be partially accounted by
the result of Theorem 2. In contrast to the orthogonal case, there are several FP basis



Table 2: Performance comparison for non-orthogonal basis case

TP/FP basis call (1st step) TP/FP basis call (2nd step) Prediction error (× 1E-04)
n σ0 grAL grSCAD grMC grAL grSCAD grMC grAL grSCAD grMC Oracle

100 0.5 4/1.58 3.92/0.2 4/0.16 4/0 4/0 4/0 1.200 1.396 1.274 1.161
1 4/1.71 3.73/1 3.92/0.51 4/0 4/0 4/0 1.482 1.689 1.719 1.392

200 0.5 4/1.49 4/0.01 4/0 4/0 4/0 4/0 1.154 1.183 1.161 1.133
1 4/1.64 4/0.15 4/0.11 4/0 4/0 4/0 1.417 1.390 1.397 1.366

calls in the first step under non-orthogonal settings. We observe that those FP calls are
included by nothing but {φ3, φ5, φ6, φ8, φ10, φ12, φ13, φ15} and this is a set of basis func-
tions precisely adjacent to {φ4, φ7, φ11, φ14}. It is eased, however, within decrement of σ0
related to signal-to-noise ratio for observed values of response functions. We guess that
non-orthogonality may raise noise signals to the adjacent components of the estimated co-
efficient matrix, since the adjacent elements of cubic B-spline basis share a part of domain
region each other. Since the estimator is constructed based on inner-product scores {ηim}
and {ζik}, orthogonal basis case may avoid this phenomenon in our settings.

5. Discussion

In this paper, we consider a two-step procedure to estimate sparse representation of co-
efficient function in basis expansion and show that the resulting estimator achieves

√
n-

consistency, a parametric rate, when the cardinality of true basis for regression coefficient
function is bounded. We note that prediction performances of two-step estimators become
close to that of the oracle estimator within increment of n among Table 1 and 2. This re-
sults, together with Corollary 3, encourage us further developments on the oracle property
as in Lee and Park (2012).
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