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Abstract 
Small area inference based on mixed models, i.e. models that contain both fixed and 
random effects, are the industry standard for this field, allowing between area 
heterogeneity to be represented by random area effects. Use of the linear mixed model 
is ubiquitous in this context, with maximum likelihood, or its close relative, REML, 
the standard method for estimating the parameters of this model. These parameter 
estimates, and in particular the resulting predicted values of the random area effects, 
are then used to construct empirical best linear unbiased predictors (EBLUPs) of the 
unknown small area means. It is now well known that the EBLUP can be unstable 
when there are outliers in sample data, and an outlier-robust EBLUP, or REBLUP, has 
been proposed by Sinha and Rao (2009), based on modifying the parameter estimating 
functions to make them less sensitive to sample outliers. Unfortunately, these 
modified estimating functions can be numerically unstable, and mean squared error 
estimation for the REBLUP is not straightforward. Taking a somewhat different 
approach, Chambers and Mokhtarian (2013) proposed an outlier robust block 
bootstrap approach to fitting a linear mixed model in the presence of both area level 
and unit level outliers. A natural extension of this bounded block bootstrap can then be 
used to define an outlier robust version of the EBLUP and a simple way of estimating 
its mean squared error. This approach is described in this paper, together with 
simulation results that provides some evidence for our claim that the new method is 
robust to the influence of outliers. In particular, it leads to an easily computed version 
of the REBLUP and an easily computed and stable estimate of its mean squared error. 
Keywords: Mixed models, robust estimation, unit-level models, variance components, 
random effect block bootstrap. 
1. Introduction 

A standard approach to small area estimation (SAE) for means or totals uses mixed 
models to express these targets of inference as linear combinations of both fixed and 
random effects. The standard method of calculating the corresponding small area 
estimates is to then use maximum likelihood (ML) or restricted maximum likelihood 
(REML) to estimate the parameters of the mixed model and to substitute these 
estimated parameter values in the expression for the Best Linear Unbiased Predictor 
(BLUP) of the small area characteristic of interest. The resulting estimator is referred 
to as the Empirical Best Linear Unbiased Predictor (EBLUP), see Henderson (1975) 
and Harville (1977). Although the EBLUP is simple to implement and is efficient 
under normality assumptions, it can be unreliable in the presence of sample outliers. 

Chambers and Tzavidis (2006) and Tzavidis et al. (2010) address this issue by 
fitting outlier robust M-quantile models to the small area data, using a generalization 
of quantile regression for SAE. Sinha and Rao (2009) also tackle this issue, using the 
M-estimation methods set out in Richardson and Welsh (1995) to construct a plug-in 
outlier robust version of the EBLUP, which they call the Robust EBLUP, or REBLUP. 
The REBLUP has a low prediction variance but its prediction bias can be high when 
the sample outliers in a small area of interest are drawn from a distribution with a 
different mean from the rest of the values from that area.  Chambers et al. (2013) 
discuss this issue and suggest that both the M-quantile estimator and the REBLUP can 
be improved by addition of an outlier robust bias correction. They also propose two 



 
 

different analytical mean-squared error estimators for these bias-corrected outlier 
robust small area estimators. 

Small area estimators based on a standard two level linear mixed model are 
dependent on EBLUPs of random area (level two) effects, which in turn depend on 
estimates of the variance components of the model. Chambers and Chandra (2012) 
describe a semiparametric two level block bootstrap method for making robust 
inferences about the parameters of a linear mixed model. This idea is adapted in 
Chambers and Mokhtarian (2013) to obtain alternative robust estimates of linear 
mixed model parameters and random effect predicted values using standard REML 
fitting methods within the replication structure of a bounded block bootstrap. In this 
paper we extend this idea to SAE under a linear mixed model, using the bounded 
block bootstrap to generate a robust alternative to the REBLUP. A key advantage of 
this approach is its ease of computation, both of the estimate and of an estimate of its 
MSE, since the bootstrap only computes REML estimates. Since analytic estimation 
of the mean squared error of outlier robust estimators like REBLUP is either very 
complex (see Chambers et al., 2013) or has well known computational difficulties, 
this alternative method of outlier robust small area inference seems promising. 

The reminder of this paper is as follows. In section 2, after introducing basic 
concepts and notation for SAE under a linear mixed model, we briefly review recent 
work on outlier robust small area estimation under this model. The proposed outlier 
robust block bootstrap method of small area estimation is set out in section 3. In 
section 4 we use model-based simulation of outlier contaminated mixture data to 
evaluate the performance of the proposed approach, both in terms of estimation of 
small area means in this situation as well as estimation of mean squared error. Section 
5 concludes the paper with some final remarks, and discussion of future research on 
outlier robust small area inference. 

2. Robust Small Area Prediction 
We suppose that data for a sample of n  individuals from a population of size N  

are available. These data consist of unit record values from G  areas, with ni  
individuals in sample in area i . For individual j  in area i , let yj  denote the value of 

the variable of interest, with  
x j  the value of a p ×1  vector of individual level 

covariates and  zi  the value of a known q ×1  vector of area level covariates. The 
number Ni  of individuals within each area i  is assumed to be known, as are the 
corresponding small area average xi  of  

x j . The target of inference is the unknown 

small area mean yi , and estimation based on a two level linear mixed model is 
proposed (Battese et al., 1988; Rao, 2003; Chambers and Clark, 2012). Throughout, 
sampling is assumed to be non-informative given the population values of  

x j  and  zi . 
Let  yU ,  XU  and  ZU  denote the population level vector of variable of interest and 

associated matrices of covariates. Then 
  yU = XUβ + ZUu+ eU  (1) 
where  u ~ N (0,Σu )  is a vector of Gq  area random effects,  eU ~ N (0,Σu )  is a vector 
of N  individual specific random effects and  u  and  eU  are assumed to be mutually 

independent. The variance-covariance matrix of  yU is  VU = Σ e + ZUΣuZU
T . The 

parameters of the covariance matrices Σu  and Σe , typically referred to as the variance 
components of (1), are denoted by  θ = (θ1,…,θk )  while the vector β  is referred to as 

the fixed effects parameter of this model. Let β̂  and  û  denote the vectors of 
estimated and predicted values respectively for the fixed and area level random effects 
in (1). The EBLUP of the area i mean yi  under (1) is then 



 
 

 ŷi
EBLUP = Ni

−1 niysi + (Ni − ni )ŷri{ }  (2) 

where  ŷri = xri
T β̂ + zi

T û  is the predicted value of non-sample mean of the variable of 
interest in area i  and the indices s and r denote sample and non-sample quantities, 
respectively. That is, ysi  is the average of the ni  sample values of yj  in area i  and 

 xri  is the vector of the area i  average values of the Ni − ni  non-sample values of  
x j . 

The predictor (2) can be sensitive to sample outliers. Consequently, Sinha and Rao 
(2009) proposed replacing β̂  and  û  by outlier robust versions in order to make (2) 
insensitive to these outliers. That is, they replaced (2) by the robust EBLUP 
(REBLUP) 

 ŷi
REBLUP = Ni

−1 niysi + (Ni − ni )ŷri
REBLUP{ }  (3) 

where  ŷri
REBLUP = xri

T β̂ rob + zi
T ûrob . Here β̂ rob  and  û

rob  are outlier robust estimates of the 
fixed and random effects vectors in (1), obtained by solving an outlier robust version 
of either the maximum likelihood or the restricted maximum likelihood (REML) 
estimating equations for these parameters. In particular, Sinha and Rao (2009) use a 
modified version of the robust estimating equations for linear mixed model parameters 
proposed by Richardson and Welsh (1995). The robust predictors of the random area 
effects in (1) are then obtained by substituting these outlier robust estimates of the 
fixed effects and the variance components of (1) into the Fellner (1986) estimating 
equations for outlier robust predicted values of random effects in linear mixed models. 

3. SAE via Outlier Robust Block Bootstrapping 
We now describe our proposed alternative outlier robust small area estimation 

method, based on application of a bounded block bootstrap (hereafter RREB) under 
(1). The RREB was proposed by Chambers and Mokhtarian (2013), and is an outlier 
robust extension of the random effect block (REB) bootstrap method of Chambers and 
Chandra (2012). Also, for notational convenience, we restrict ourselves from now on 
to the special (but widely used) case of (1) where z i ≡ 1 , so Σu  is scalar below. 

The bootstrap technique (Efron and Tibshirani, 1993) was originally developed for 
parametric inference given independent and identically distributed data. The block 
bootstrap extends this to accommodate the hierarchical dependence structure of the 
clustered and multilevel data that are characteristic of SAE. Although the bootstrap 
technique is typically used for estimating parametric estimation uncertainty given an 
assumed model, Chambers and Mokhtarian (2013) adapt this technique to modelling 
data with group structure, e.g. a linear mixed model. The REB bootstrap replications 
rely on level-specific empirical residuals to construct bootstrap samples. The RREB 
restricts the influence of the sample outliers by bounding these residuals. Like the 
REB, the RREB is semiparametric in the sense that although the bootstrap model is 
based on estimated parameters defined by fitting the model to the sample data, the 
dependence structure in the bootstrap model residuals is generated nonparametrically, 
by replicating groups and then individuals within groups rather than re-sampling the 
sample data at random. This ensures that the RREB, like the REB, is robust to failure 
of the distribution assumptions of the model (1). 

The RREB procedure for estimating a set of small area means is as follows: 
1. Fit a two level linear mixed model (1) to the sample data and use the marginal 

residuals  rs = ys − Xsβ̂  to calculate the area (level 2) average residuals 

 r
(2) = DGrs , where  DG  is G-block diagonal matrix whose diagonal elements 

are  ni
−11ni

T . Here 1m  denotes a m -vector of ones. 

2. Bound the effect of the mean zero level 2 residuals, r
(2)c = r(2) − av(r(2) )1G  , 

using a suitable bounded influence function. Here av(w)  denotes the 



 
 

averaging operator for the vector w . Also, before we bound these residuals, 
we scale them to recover the REML estimate Σ̂u  of the variance of the area 
random effect. The vector of outlier robust area specific (level 2) residuals is 

 
 
r(2)R =ψ G−1 r(2)c( )T r(2)c{ }−1/2 r(2)cΣ̂u

1/2⎡
⎣⎢

⎤
⎦⎥
.   

Here ψ  is the Huber influence function with tuning constant is 2Σ̂u
1/2 .  

3. Calculate mean zero individual effect (Level 1) residuals as 

 
r(1)c = rs − r(2)R ⊗1ni( )− av rs − r(2)R ⊗1ni( )1n . As with the Level 2 residuals, 

these are now scaled to recover the REML estimate Σ̂e  of the Level 1 
variance and then bounded using the Huber ψ  function with tuning constant 

2Σ̂e
1/2 . The set of outlier robust Level 1 residuals is therefore 

 
 
r(1)R = ri

(1)R( ) =ψ n−1 r(1)c( )T r(1)c{ }−1/2 r(1)c( ) Σ̂e
1/2⎡

⎣⎢
⎤
⎦⎥
.   

4. Let srswr(A,m)  denote a sample of size m  taken randomly and with 
replacement from the set A . Level 1 and level 2 bootstrap errors are then 
defined by sampling independently and with replacement from each set of 
outlier robust residuals separately: 

 

  

r*(2)R = srswr(r(2)R ,G);
ri
*(1)R = srswr(rsrswr 1,…,G{ },1( )

(1)R ,ni );

r*(1)R = ri
*(1)R( ).

  

5. Generate outlier robust bootstrap sample data  ys
*R  via 

  ys
*R = Xsβ̂ + Zsr

*(2)R + r*(1)R  (4) 
6. Fit a two-level linear mixed model to the bootstrap values in (4) to obtain 

REML estimates of fixed effects parameters and variance components as well 
as predicted random effects. 

7. Repeat steps 4 - 6 B times to obtain the RREB values of the parameter 
estimates. Denote these by 

 
β̂ (b)RREB, Σ̂u

(b)RREB, Σ̂e
(b)RREB;b = 1,…,B{ } . 

Let β̂ RREB , Σ̂u
RREB  and Σ̂e

RREB

 denote the bootstrap averages of β̂ (b)RREB , Σ̂u
(b)RREB  

and Σ̂e
(b)RREB  respectively. The RREB estimate of the mean of small area i  is then 

 ŷi
RREB = Ni

−1 niysi + (Ni − ni )ŷri
RREB{ }  (5) 

where  ŷri
RREB = xri

T β̂ RREB + ûRREB . There are three versions of  û
RREB  (and hence three 

versions of ŷi
RREB ) depending on the type of bootstrap averaging used to obtain this 

predicted value. 

 
 
ûRREB-1 = B−1 ni

−1Σ̂e
(b)RREB + Σ̂u

(b)RREB( )−1 Σ̂u
(b)RREB ysi − x si

T β̂ (b)RREB( ){ }b=1

B∑   

 
 
ûRREB-2 = B−1 ni

−1Σ̂e
(b)RREB + Σ̂u

(b)RREB( )−1 Σ̂u
(b)RREB

b=1

B∑{ } ysi − x si
T β̂ RREB{ }

 
 

 
 
ûRREB-3 = ni

−1Σ̂e
RREB + Σ̂u

RREB( )−1 Σ̂u
RREB{ } ysi − x si

T β̂ RREB{ }
 

 

Finally, we note that the MSE of the RREB estimator (9) can be easily estimated 
using the observed variability in the RREB bootstrap replications, via 

 
 
MSE

RREB
(ŷi

RREB) = B−1 ŷi
(b)RREB − ŷi

RREB( )2b=1

B∑ .  (6) 

  



 
 

4. Model-Based Simulations 
A series of model-based simulation experiments were used to evaluate the 

performance of the different small area estimation methods discussed in the previous 
section. In these simulations, we generated data using a two-level model of the form 
yij = 100 + 5xij + ui + eij  where we fixed the total number of areas at G = 40 . The 

population and sample size were the same for all areas and were fixed at Ni = 100  and 
ni = 5 , and sampling was at random and without replacement in each area. Values of a 
covariate x  were generated independently and identically from a log-normal 
distribution with a mean of 1.0 and a standard deviation of 0.5 on the log-scale. The 
area specific random effects and the individual specific random effects were generated 
according to the four contamination-type scenarios set out in Table 1. 
 

Table 1. Simulation scenarios. 

Scenario Area effect distribution Individual effect distribution 
[0,0]: no outlier u ~ N(0,3)  e ~ N(0,6)  

[0,e]: individual 
outliers only 

u ~ N(0,3)  

e ~ δN(0,6)+ (1−δ )N(20,150)  
where δ  is an independently 
generated Bernoulli random 
variable with Pr(δ = 1) = 0.97  

[u,0]: area outliers 
only 

areas 1-36: u ~ N(0,3)  
areas 37-40: u ~ N(9,20)  

e ~ N(0,6)  

[u,e]: outliers in both 
area and individual 
effects 

areas 1-36: u ~ N(0,3)  
areas 37-40: u ~ N(9,20)  

e ~ δN(0,6)+ (1−δ )N(20,150)  
where δ  is an independently 
generated Bernoulli random 
variable with Pr(δ = 1) = 0.97  

 
Table 2. Model-based simulation results for predictors of small area means. 

Predictor 
Results for different outlier scenarios and areas 

[0,0] 1-40 [0,e] 1-40 [u,0] 1-36 [u,0] 37-40 [u,e] 1-36 [u,e] 37-40 
Median values of RB (%) 

EBLUP 
REBLUP 
RREB-1 
RREB-2 
RREB-3 

0.02 
0.03 
0.04 
0.02 
0.04 

-0.20 
-0.39 
-0.34 
-0.17 
0.32 

0.10 
0.11 
0.91 
0.08 
0.85 

-0.54 
-0.47 
-6.71 
-0.42 
-6.70 

0.17 
-0.30 
0.63 
0.10 
0.58 

-1.59 
-1.00 
-6.81 
-0.78 
-6.78 

Median values of RRMSE (%) 
EBLUP 
REBLUP 
RREB-1 
RREB-2 
RREB-3 

0.81 
0.82 
1.71 
0.81 
0.83 

1.22 
1.01 
1.89 
1.03 
1.23 

0.85 
0.84 
1.92 
0.85 
0.82 

0.97 
1.02 
7.55 
0.97 
2.18 

1.37 
0.99 
1.84 
1.02 
1.39 

2.36 
1.44 
7.61 
1.42 
2.21 

A total of 500 independent Monte Carlo simulations (population generation, then 
sample selection) were carried out for each simulation scenario, and within each 
simulation we calculated the EBLUP (2), the REBLUP (3) and all three versions of 
the REBB (5) using 1000 bootstrap replications, this number of simulations and 
bootstrap samples being suitable for evaluating 95 per cent percentile confidence 
intervals; see Caers et al. (1998). These estimators were then assessed using the 
median values of their area specific relative bias (RB) and relative root mean-squared 
error (RRMSE). These performance measures are set out in Table 2. In Table 3 we 
show the same performance measures, but this time for the bootstrap MSE estimator 
(6) for the three versions of the RREB estimator (5). Note that the MSE estimator for 
the EBLUP in this Table is the estimator of Prasad and Rao (1990). 



 
 

Table 3. Model-based simulation results for RREB bootstrap estimators of MSE 

Predictor 
Results for different outlier scenarios and areas 

[0,0] 1-40 [0,e] 1-40 [u,0] 1-36 [u,0] 37-40 [u,e] 1-36 [u,e] 37-40 
Median values of RB 

EBLUP 
RREB-1 
RREB-2 
RREB-3 

-0.34 
4.08 
-0.91 
-0.90 

1.74 
4.05 
-0.89 
-0.90 

3.82 
4.94 
-0.94 
-0.94 

-17.31 
4.87 
-0.82 
-0.77 

11.32 
5.91 
-0.95 
-0.95 

-40.86 
5.37 
-0.88 
-0.84 

Median values of RRMSE 
EBLUP 
RREB-1 
RREB-2 
RREB-3 

6.24 
48.57 
16.75 
16.27 

18.57 
43.38 
19.08 
19.12 

7.20 
52.80 
16.89 
16.94 

17.90 
51.33 
12.92 
13.03 

22.28 
63.64 
25.65 
26.06 

43.19 
57.62 
22.88 
23.01 

5. Conclusions 
Our simulation results show that the bootstrap averaging used in RREB-1 and in 
RREB-3 is inferior to that used in RREB-2. The reason for RREB-1's overall poor 
performance is because bootstrap averaging of predicted random effects is effectively 
the same as zeroing them, resulting in what is essentially a synthetic estimate. In 
contrast, the reason for RREB-3's poor performance is overshrinkage due to bias in 
robust estimates of the variance components. However, it is clear RREB-2 performs 
well in all the scenarios investigated in the study, with bias and mean squared error 
that is very similar to that of the REBLUP. Furthermore, the easily calculated 
bootstrap MSE estimator (6) performs well when used with RREB-2. 
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