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Abstract 
When the sample selection probabilities and/or the response probabilities are related to 
the model dependent variable even after conditioning on the model covariates, the 
model holding for the sample data is different from the model holding in the 
population from which the sample is taken. Ignoring the sample selection or response 
mechanism in this case may result in biased inference. Accounting for sample 
selection bias is relatively simple because the sample selection probabilities are 
usually known. In this paper we consider the much harder problem where in addition 
to sample selection bias, the response mechanism is also not ignorable with unknown 
response probabilities. Our approach is based on empirical likelihood, which is 
defined with respect to the model holding for the data observed for the responding 
units. Simulation results with binary dependent outcomes illustrate the good 
performance of the proposed approach. 
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1. Introduction 

   Survey data are often used for analytic inference on statistical models assumed to 
hold for the population from which the sample is taken. It is often the case, however, 
that the sampling design used to select the sample is informative for the population 
model in the sense that the sample selection probabilities are correlated with the target 
outcome variables even after conditioning on the model covariates, in which case the 
model holding for the sample data is different from the population model.  
   Inevitably, sample data are subject to non-response, which is informative for the 
population model if the response probabilities are correlated with the outcome values 
after conditioning on the model covariates, known as `not missing at random' 
(NMAR) non-response. Here again, the model holding for the data observed for the 
responding units is different from the sample model under complete response, which 
as noted above is different from the population model under informative sampling. 
Clearly, ignoring an informative sampling design and/or response mechanism may 
yield highly biased estimators and distort the inference. 
   Pfeffermann (2011) reviews several approaches proposed in the literature to deal 
with informative sampling, ranging from weighting each sample observation by the 
corresponding sampling weight, to maximization of the sample likelihood as defined 
by the model holding for the sample data. A common feature of these approaches is 
that they utilize the sampling weights in the inference process, although in different 
ways. On the other hand, accounting for NMAR non-response is much more 
complicated as the response probabilities are practically never known, requiring some 
assumptions on them. Pfeffermann and Sikov (2011) review approaches proposed in 
the literature to deal with NMAR non-response, but these approaches are quite limited. 
In particular, most of the approaches assume that the model covariates are known also 
for the non-respondents, which is often not the case.  
   Evidently, accounting for both informative sampling and NMAR non-response in a 
single analysis is a major undertaking, and the present article attempts to tackle this 
problem. We assume that not only the outcome values are missing for the non-
responding units but also the covariates, known as unit non-response. The only 
additional information beyond the data observed for the responding units assumed to 



be known is the population totals of calibration variables, which may include some of 
the model covariates, and possibly also the outcome variable. The totals of such 
calibration variables are often available from administrative or census records. Our 
proposed approach uses the empirical likelihood (EL) as the basis for inference on the 
target population model. The use of EL for analyzing complex survey data has its 
origins in a landmark paper by Hartley and Rao (1968), and has gained increasing 
interest in recent years in a general context following Owen (1988, 1990, 1991, 2001). 
Another important reference is Qin and Lawless (1994). The EL combines the 
robustness of nonparametric methods with the effectiveness of the likelihood 
approach. Another important advantage of this method is that it lends itself very 
naturally to the use of calibration constraints, thus enhancing the precision of the 
estimators. See, e.g., Chen and Keilegom (2009) for a recent review. The use of this 
approach has also computational advantages over fully parametric approaches. 

2. The sample and respondents distributions 

   Let iy  denote the value of an outcome variable Y  associated with unit i  belonging 

to a sample S  drawn from a finite population {1 }U = ,...,N  with known inclusion 

probabilities ( )iπ = Pr i s . Let iI  define the sampling indicator; 1(0)iI   if unit i  

is sampled (not sampled), and 1x ( )i i pi= x ,...,x   denote the values of  p auxiliary 

variables (covariates) associated with unit i . In what follows we assume that the 
population outcomes are independent realizations from distributions with probability 
density functions (pdf) ( )P i if y x , where for now we omit for convenience the 

underlying parameters from the notation. Following Pfeffermann et al. (1998), the 
marginal sample pdf, ( | x )S i if y , defines the conditional pdf of iy  given that unit i  

is in the sample ( 1iI  ). By Bayes rule, ( | x ) ( | x , 1)S i i i i if y f y I 
Pr( 1| x , ) ( | x ) / Pr( 1| x )i i i p i i i iI y f y I   . Note that Pr( 1| x , )i i iI y  is 

generally not the same as the sample selection probability Pr( 1| )i i UI Z   , where 

UZ  defines a matrix of population values of design variables used for the sample 

selection. Typically, Pr( 1| , , x )i i i i iI y   , in which case Pr( 1| , x )i i iI y  

( | , x )P i i iE y , where ( )PE   is the expectation under the population pdf. The 

population and sample pdfs differ unless Pr( 1| x , ) Pr( 1| x )i i i i iI y I   for all iy , 

and when this condition is not met, the sampling design is informative and cannot be 
ignored in the inference process.  
   Next consider the respondents distribution. Let {i | = 1}iR = R  define the sample of 

respondents of size r  with observed outcomes and covariates where 1(0)iR   if 

sample unit i  responds (does not respond). The response probabilities may depend on 
covariates v , which may differ from x  in one or more components.  The marginal 
pdf for responding unit i  is then ( | x ) ( | x , 1, 1)R i i i i i if y f y I R    

Pr( 1 ,v , 1) ( | x ) / Pr( 1| v , x , 1)i i i i S i i i i i iR y I f y R I     . Note that unless 

Pr( 1| , x , 1)i i i iR y I  Pr( | x , 1)i i iR I  for all iy , the respondents pdf  differs 

from the sample pdf.  
   So far we excluded for convenience from the notation the parameters governing the 
various distributions. If the outcome and the response are independent between the 
units, the respondents’ likelihood has the form,   

      Resp
1

Pr( 1 , v , 1; ) Pr( 1| , x ) ( | x ; )
( , )

Pr( 1 x , v , 1; , ) Pr( 1| x )

r
i i i i i i i P i i

i i i i i i i

R y I I y f y
L

R I I

 
 

 

  


   .      (1) 



Remark 1. In theory, one needs to model also the probabilities Pr( 1| , x )i i iI y  but 

under the mild assumption that Pr( 1| , , x )i i i i iI y   , the probability 

Pr( 1| , x )i i iI y  can be estimated outside the likelihood using the relationship 

Pr( 1| , x ) ( | , x )i i i P i i iI y E y  1/ ( | , x )S i i iE w y , where 1/i iw   is the 

sampling weight. Thus, the probabilities Pr( 1| , x )i i iI y  can be estimated by 

regressing iw  against ( , x )i iy  using the sample data, and then plugging the estimates 

into (1). See Pfeffermann and Sverchkov (2003, 2009) for different approaches and 
examples of modeling and estimating the expectations ( | , x )S i i iE w y . Alternatively, 

and as illustrated in Pfeffermann (2011), the expectations ( | , x )S i i iE w y  can be 

estimated nonparametrically, and this is the approach adopted in the present paper.  
 

3. Conditional  empirical likelihood, given the Respondents' data 

   We assume that for each unit i  corresponds a vector ( , x , , , )i i i i i iu y c      where 

iy  and x i  are related via a model ( | x ; )p i if y  , ic  is a vector of survey values for 

which the population means are known, ( | , x )i p i i iE I y   and 

( | , x , 1)i p i i i iE R y I   . We employ the load-scale approach of Hartley and Rao 

(1968), assuming that the finite population values are generated from a multinomial 
distribution. Suppose that the only values attained in the finite population U  are those 
observed for the respondents. Denote by iN  the number of units j U assuming the 

vector iu  and let /i ip N N , where ii
N N . The vector parameter of interest is 

1 1
( ,..., ), 1

r

r ii
p p p p


  . 

R-level empirical likelihood: The distribution of the observed data is the respondents’ 
distribution (hereafter the R-level distribution), and the likelihood is, ( )r

ii R
EL p


 , 

where ( ) Pr( | ) /r
i i i i i k k kk R

p u i R p p   


    . Chaudhuri et al. (2010) use the 

same likelihood for the case of full response. 

R-level constraints: Under the assumptions above,
 i ii R

p c
 1

i ii R
N N c


 

1
j Uj U

N c c


  , yielding the R-level constraints ( ) 1 1( ) 0r
i i i i Ui R

p c c  


  .   

In particular, denoting i i i    we have, i i Ui R
p 


 , which is equivalent to 

( )[1 ( / )] 0r
i ii R

p  


   and by approximating /r N   we have  
( )[1 /( )] 0r
i i ii R

p r N 


  . We refer to the last equation as the r-constraint. We 

found in our empirical study that imposing this constraint “as is” causes numerical 
difficulties, possibly due to the fact that the optimization solution is not necessarily an 
internal point of the feasible domain (a familiar problem in EL maximization under 
constraints). However, adding a random noise solves the problem. This was done by 

rewriting the r-constraint as [ ( / ) ] 0i i i ii R
p r N  


   , Unifom( , )i a a   

with 0a   a small number. Since ( ) 0iE   , this modification is valid. 

Response model: The response probabilities, i , are unknown and need to be 

estimated. In order to account for possible NMAR nonresponse, we model them as a 
function of the outcome and the covariates. Specifically, we assume   

1( ) Pr( 1| , v ; ) logit [ ( , v ; )]i i i i i iR y l y       where  1 1logit ( ) (1 )ss e     



and ( , v ; )i il y   is a polynomial in ( , x)y with coefficients  . A function of the form 
1logit [ ( , v ; )]i il y   can approximate the true response function arbitrarily close.  

Population model: We assume that the target population model has the general form 
( | x ; ) (x ; )j j jE y = m  , where (x ; )jm   has a known form and the covariates are 

taken as random. Under some regularity conditions, the estimate of the vector 
parameter   is the unique solution of the equations 

{[ (x; ) / ][ (x; )]} 0pE m y m      .  

Estimation: Incorporating the response model into the R-level EL, results in the 

following maximization problem where we denote ( ) ( ) ( )
1( ) [ ( ),..., ( )]r r r

rp p p   : 

                            
( )

( ) ( )

1, ( )
max ( ), s.t. ( ) ( ) 0

r

r r r
iip

p A p
 

  


 ,                              (2) 

where the rows of the matrix ( )A   consist of  1 1( )i i i Uc c     and 11 ( )i ir N   .   

The profile likelihood: The maximization in (2) is equivalent to max ( )G   with the 

same constraints where ( )

( )

( ) 1
( ) max ( )r

r r
ip i

G p


 


  . Therefore, for given  , the 

computation of ( )G   reduces to maximization of the type 

11 1
max{ : 0, 1, ( ,..., ) 0}

r r

i i i ri i
h h h A h h

 
    . We solve this maximization 

problem by adapting the S function elm, written by A. Owen to the R software, with 
some modifications. Note that ( )G   is the profile likelihood of  .  

Maximum likelihood estimation of  : Finding arg max ( )G   is done by using the 

numerical optimization routine optim in R. The initial point for the maximization can 
be found by a grid search.  

Parametric estimation of ˆ( )Var  : Whilst a profile likelihood is not, properly 
speaking a likelihood, under general conditions one can still estimate the variance 

using the Hessian 2 2( ) ( / ) ( )H G      and estimate 1ˆ( ) ( )Var H   .  

Estimation of the population parameter 1( ,..., )rp p p : Once we obtain ̂ , 

( )

( ) ( ) ( )

1ˆ( )
ˆ ˆ ˆˆ arg max ( ), s.t. ( ) ( ) 0

r

rr r r
iip

p p A p


  


  . Since ( )r
i i i ip p  ,  

( ) 1 ( ) 1

1
ˆ ˆˆ ˆ ˆ[ ( )] / [ ( )]

rr r
i i i i j j jj

p p p      


  . 

Estimation of target parameter  : for given p̂ , ̂  is the unique solution of the 

equations 
1

ˆ {[ (x ; ) / ][ (x ; )]} 0
r

i i i ii
p m y m  


    .  

Parametric estimation of ˆ( )Var  : ˆ( )Var   ˆ ˆˆ ˆ[ ( | )] [ ( | )]Var E E Var    . The 1st  

term can be estimated by drawing at random K  vectors 1,..., K   from ˆ ˆ[ , ( )]N Var   

and computing, ˆ ˆˆ [ ( | )]Var E    

 
1

1 ˆ ˆ ˆ ˆ[ ( | ) ( | )][ ( | ) ( | )]
1

K

k kk
E E E E

K
       


  

  ; 1

1
ˆ ˆ( | )] ( | )

K

kk
E K E   


  . 

The 2nd  term can be estimated by the “sandwich estimator” (Owen, 2001, pp.55-56). 
 

  



4. Simulation results 

   In order to test the performance of our proposed approach we conducted a small 
simulation study as follows: A population of values , 1,...,10000jx j   was generated 

from (2,2)gamma and truncated at 3. For each jx , a binary response jy  was 

generated as 1Pr( 1| x ; ) logit ( 0.8 0.8 )j j jy x     . Next, a value of a design 

variable Z  was generated as max[( 1.1)(2 1) ,0.01]j j j jz x y v    ; 

Uniform( 0.2,0.2)jv  . Values of calibration variables c  were generated as 
2 2(1, , , , , )j j j j j j j j jc x y x y x x y   ; (0, )j MN  . A sample was selected via 

Bernoulli sampling, ( )j jI Ber  , where  
100001 1

1
min(3500 / ,0.9999)j j kk

z z  


  . 

The sampled units were classified as respondents with probabilities ( )i iR  , where 
1

0logit ( )i x i y ix y      , with 0 0.7, 0.5, 1.5x y     . The process of 

generating the population values and selecting the sample of respondents was repeated 
independently 100 times. (The x-values were generated only once). We use kernel 
smoothing to obtain estimates of ( | ; ) ( | ; )S i i i R i i iE w y x E w y x by applying kernel 

regression of iw on ( , )i iy x  and their interaction using the R function npreg from the 

np package at its default setting. For each sample of respondents we estimate ( , )   
and the variance of the estimators using the procedures described above. We also 
applied the Bootstrap (BS) method for estimating the variances of the estimators of the 
  coefficients. This was done by sampling 40B  simple random samples with 
replacement from each of the 100 primary samples and estimating the coefficients 
from the BS samples. We are running more BS samples at present.   

Table 1. Mean Estimates, Standard Errors and SQRT of Mean of Variance estimates, 
 -coefficients. 0 10.8, 0.8    . Mean sample size 3622.12; mean number of   

respondents,  2438.4. 

 Mean Est. Empirical SE Par. SE Est. BS SE est. 

Method 
0̂  1̂  0̂  1̂  0̂  1̂  0̂  1̂  

FR UW -1.91 0.81 0.07 0.07   0.07 0.07 
FR PW -0.80 0.80 0.07 0.07   0.07 0.07 
FR EL -0.80 0.80 0.07 0.07   0.07 0.07 

MAR UW -2.66 0.97 0.12 0.10   0.11 0.09 
MAR PW -1.55 0.96 0.12 0.10   0.11 0.10 
CCREL -0.77 0.79 0.17 0.10 0.18 0.09 0.19 0.11 

 

FR= Full response, estimators obtained from all sample data; UW= Unweighted; 
PW= Probability weighted; MAR= estimators obtained when ignoring response 
mechanism. CCREL= proposed method: constrained conditional respondents' EL. 
 

Table 2. Mean Estimates, Standard Errors and SQRT of Mean of Variance estimates, 
 -coefficients. 0 0.7, 0.5, 1.5x y     .  

 
 

 

 

Mean Est. Empirical SE Par. SE Est. 

0̂  ˆ
x  ˆ

y  0̂  ˆ
x  ˆ

y  0̂  ˆ
x  ˆ

y  

0.74 0.53 -1.55 0.21 0.20 0.32 0.21 0.19 0.34 



5. Conclusions 

   The proposed approach is numerically simpler and much more stable than fully 
parametric alternatives. The results from our simulation study demonstrate the good 
properties of the method for sufficiently large number of respondents 
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