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Abstract. Rank tests are widely used for exploratory and formal inference in the
health and social sciences. With the widespread use of data from complex survey
samples in medical and social research, there is increasing demand for versions of
rank tests that account for the sampling design. We propose a general approach
to constructing design-based rank tests when comparing groups within a complex
sample and when using a national survey as a reference distribution, and illustrate
both scenarios with examples. We show that the tests have asymptotically correct
level and that the relative power of different rank tests is not greatly affected by
complex sampling.
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1. Introduction

Rank-based tests are widely used by researchers in the social and health sciences.
Data from complex multistage survey designs are increasingly important in these
areas, with more and more large studies publishing public-use data. The extension
of rank tests to data from complex samples would be valuable to researchers who
wish to do the same analyses with data from, say, NHANES or the British Household
Panel Survey as they would do with data from a cohort or cross-sectional sample.
In this paper we give a general and computationally simple approach to design-
based rank tests with complex sampling. The term design-based here means that
two criteria should be satisfied: that the same population null hypothesis is tested
regardless of the sampling scheme and that the test has the specified level, at least
asymptotically, when this hypothesis is true.

In the absence of design-based methods, rank tests, especially the Wilcoxon rank-
sum test, are currently used on data from complex surveys by simply ignoring the
sampling scheme, even in papers that correctly use sampling weights in other aspects
of the analysis such as fitting regression models or estimating summary statistics.
To give some idea of the extent of this use, GoogleScholar lists almost 2,500 papers
with “NHANES” and “Wilcoxon” in the abstract. For example, Knovich et al (2008)
examined the relationship between serum copper and anaemia in the NHANES II
sample, using design-based logistic regression for their primary analyses, but un-
weighted Wilcoxon rank-sum tests for comparing serum copper between non-anaemic
and anaemic groups. Similarly, the Wilcoxon rank-sum test was used by Leece(2000)
to compare households with fixed- and floating-rate mortgages using data from the
British Household Panel Survey. In all these examples a simple design-based version
of Wilcoxon rank-sum or quantile test would have been preferable, and would likely
have been used if it had been readily available.
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Recently, Natarajan et al (2012) developed an extension of the Wilcoxon rank-sum
test to complex samples, based on fitting a proportional odds regression model to the
data, and using the score test, which is known to be asymptotically equivalent to the
Wilcoxon test under random sampling. Their method is limited to ordinal categorical
data: neither the theoretical nor the computational approach generalize immediately
to continuous data, where the underlying proportional odds model would have as
many parameters as observations. The approach also does not generalize to other
rank tests; the score tests in other cumulative link models for ordinal data do not
reduce to rank tests in the same way.

2. Construction of the rank test

2.1. Comparing groups within a survey. Suppose that we have data from a
sample of n units, drawn from a finite population of N units in which the ith popu-
lation unit has values (Yi, Gi), where Yi is real-valued and Gi ∈ {0, 1} is a grouping
variable. We shall assume that the finite population values, {(Yi, Gi) : i = 1, . . . , N},
are generated independently from some joint distribution with marginal distribution
function FY . We want to test the null hypothesis that Y is independent of G against
the alternative that Y is stochastically ordered by G. In other words, we want to test
H0 : F0Y (y) ≡ F1Y (y) where F`Y (y) denotes the conditional distribution function of
Y given G = ` (` = 0, 1).

First consider the finite-population quantity that will be estimated by the sample
rank test. Let

FN(y) =
1

N

N∑
i=1

I(Yi ≤ y)

denote the empirical finite-population distribution function of Y . The scaled finite
population ranks, R1, . . . , RN , are defined by setting Ri = FN(Yi). We define the
finite-population rank test statistic, TN , as the difference in the mean of g(Ri) be-
tween the groups for a suitable function g. For example, the Wilcoxon test uses
g(Ri) = Ri, the normal-scores test uses g(Ri) = Φ−1(Ri), and Mood’s test for the
median uses g(Ri) = I(Ri > 1/2). Thus

(1) TN =
1

M0

∑
{i:Gi=0}

g(Ri)−
1

M1

∑
{i:Gi=1}

g(Ri),

where M` =
∑N

i=1 I(Gi = `) is the number of finite population units in group `.

For simplicity, we shall assume that Y has a continuous distribution. However, when
g is a continuous function, the test can be extended to include discrete Y by replacing
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Ri with the mid-rank, R∗i = {FN(y) + FN(y−)} /2 with FN(y−) =
∑N

j=1 I(Yj < y)/N ,

as in Conover (1973) or Hudgens & Satten (2002).

We draw a sample, s, of n units from the finite population using some probability
sampling design with selection probabilities πi, and corresponding sampling weights
wi = 1/πi, and we observe the values of Yi and Gi for the sampled units. In large
surveys the sampling probabilities and weights will often include adjustments for non-

response, frame errors, and other imperfections. The estimated population ranks R̂i

are defined as R̂i = F̂n(Yi) where

F̂n(y) =
1

N̂

∑
j∈s

wjI(Yj ≤ y),

with N̂ =
∑

j∈swj, is the Hájek estimator of FN(y) and hence a consistent estima-

tor of the finite-population and super-population distribution functions, FN(y) and
FY (y) respectively. These are not the same as the sample ranks unless we have a

self-weighting design. We can now define T̂n, the sample version of the rank test
statistic, as the estimator of the finite-population quantity TN in equation (1):

(2) T̂n =
1

M̂0

∑
i∈s0

wig(R̂i)−
1

M̂1

∑
i∈s1

wig(R̂i),

where s` = {i ∈ s : Gi = `} and M̂` =
∑

i∈s` wi is the Horvitz–Thompson estimator
of M` for ` = 0 or 1.

If R̂i was a fixed quantity associated with the ith unit in the realised finite population,

then T̂n would be the difference between two estimated domain means and inference
based on it would be straightforward. Inference is complicated by the fact that the

value of R̂i is not fixed for the finite population but depends on the values of the other
units drawn in the sample, as well as on the sampling design through the weights.

If we set Ui = FY (Yi), replacing the estimate F̂n in the definition of R̂i with the
superpopulation quantity FY , then the Uis do not depend on the sample values or
the sampling design in any way. The classical proof that Ui can be substituted for Ri

with no effect on the asymptotic null distribution of the full finite population statistic
TN relies heavily on exchangeability (see Hajek & Sidak, 1967, Chapter 5) and does

not carry over to R̂i under complex sampling. However, an alternative approach using
the functional delta method and the weak convergence of N1/2 ({FN(y)− FY (y)} to
a Brownian Bridge (van der Vaart & Wellner, 1996) can be adapted for complex

samples. We adopt this approach here and show that, under suitable conditions, T̂n
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defined in (2) has the same asymptotic null distribution as

T̃n =
1

M̂0

∑
i∈s0

wig(Ui)−
1

M̂1

∑
i∈s1

wig(Ui).

More precisely, if we set D̂n(y) = F̂0n(y)−F̂1n(y) where F̂`n(y) = M̂−1
`

∑
i∈s` wiI(Yi ≤

y) is the estimator of F`Y (` = 0 or 1), then we can write

n1/2
(
T̂n − T̃n

)
= n1/2

∫ {
g(F̂n)− g(FY )

}
dD̂n(y).

Let δY =
∫
g(y) dDY (y). Then, under suitable conditions, n1/2(T̂n−δY ) and n1/2(T̃n−

δY ) are asymptotically normal with mean zero. Moreover, if H0 : F0Y ≡ F1Y is true,

then δY = 0 and n1/2(T̂n − T̃n)→0 in probability. Details are given in Lumley &
Scott (2013).

Now T̃n is simply a difference between two estimated domain means. Methods for

computing an estimate of its variance, Ṽn(U) say, are standard and now available
routinely in most general-purpose statistical software. The asymptotic equivalence

of T̂n and T̃n means that we can use replace Ui by R̂i without affecting the asymp-
totic null distribution. Thus, a design-based rank test can be based on the test

statistic Ẑn = T̂n/V̂
1/2
n , where V̂n = Ṽn(R̂). We have provided an implementation

in the svyranktest function in the R package survey. This implementation uses a t
reference distribution rather than the asymptotic normal distribution, with degrees
of freedom defined as C −H, where C is the number of primary sampling units and
H is the number of strata. Note that this can make a substantial difference even in
big surveys since the degrees of freedom may be small even when the sample size is
large.

2.2. Comparing a targeted sample to a population survey. Another common
use of rank tests is to compare measurements from a targeted sample to reference
values obtained from a large national survey. The NHANES series of surveys, which
includes a wide range of assays performed on blood samples giving population dis-
tributions for nutrients, environmental pollutants, disease biomarkers, and other
variables, is particularly useful for such comparisons..

When the targeted sample is a well-defined probability sample from a population
that is distinct from that sampled in the big survey, the targeted sample and main
sample can be treated as two strata of a single stratified sample from the combined
population. Examples would include comparisons across time and comparisons be-
tween countries. The targeted sample could also be a well-defined probability sample
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from a subset of the main population, as when comparing data from a state survey
with national data. In this scenario we can treat the data as a dual-frame survey
(Lohr & Rao, 2000). Metcalf & Scott (2009) described a large class of estimators
for dual-frame surveys that use the original design weights for the non-overlapping
subsets of the two surveys and rescale the weights to prevent double-counting for
population in the overlap of the two sampling frames. For example, if data from a
California survey were being compared to data from a nation–wide survey, it would
be necessary to decide how to apportion the weight for California between the Cal-
ifornian survey and the Californian subset of the national survey. A simple and
reasonably efficient choice is to apportion the weight in proportion to the sample
size the two surveys have for California. The two surveys would then be treated as
two strata in a combined data set with the adjusted weights.

More commonly, a small targeted sample that was not drawn according to any proba-
bility mechanism is being compared to a reference distribution obtained from a large
survey. In this situation we can still model the data as coming from a dual-frame
survey, but one in which the sampling frame for the targeted sample is just the sam-
ple itself. Since the overlap will be a negligible fraction of the larger sampling frame ,
we propose to use the sampling weights from the larger survey without modification.
We use weights wi = 1 for the targeted sample, reflecting the fact that they are
members of the main sampling frame but need not be sampled in a way that makes
them representative of any larger subset of the population. Again, the two samples
are then treated as strata in a combined data set.

3. Example: Serum copper and anaemia in NHANES II

To show the potential impact of the sampling design on inference we repeat an
analysis from Knovich et al (2008). The authors conjectured that copper deficiency
would explain some cases of anaemia, and compared serum copper concentrations
in people with and without anaemia using data from NHANES II. They reported
unweighted median serum copper concentrations in anemic and non-anaemic subjects
as 1260 and 1190 µg/dl, respectively, and described this as statistically significant
using an unweighted Wilcoxon test. We compute the unweighted Wilcoxon p-value
to be 1.3 × 10−7. The weighted estimates of the population median are 1200 and
1160µg/dl, noticeably lower than the unweighted estimates, and the design-based
Wilcoxon p-value is 0.011. The Wilcoxon test still reports a statistically significant
difference, but the p-value is much larger and a test for difference in medians gives a
p-value of only 0.079.



6 T. Lumley and A. J. Scott*

Three factors are responsible for the inflated significance of the unweighted Wilcoxon
test. First, ignoring the weights gives a slightly larger difference between the distri-
butions of serum copper. Second, ignoring the clustering overstates the precision of
the comparison. Finally, the survey design, with 64 sampling units and 32 strata,
has low design degrees of freedom, so a t reference distribution is more appropriate
than the normal distribution used in the naive Wilcoxon test.

We should note that the main results of Knovich et al (2008) do not come from the
Wilcoxon test, but from a logistic regression model that did account for the clustering
in the design, and their conclusions of a U-shaped relationship between serum copper
and anemia are still supported by the analysis.
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