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Abstract

Data on multiple categorical variables are often collected in surveys in
order to measure a smaller number of underlying dimensions. Models of a
factor analysis type may be fitted to the resulting contingency table in order
to capture these dimensions. Maximum likelihood type estimation methods
can be computationally burdensome and we shall consider methods which
reduce this computation and can be adapted to allow for weights and other
features of complex survey sampling schemes. We focus on the problem
of testing the goodness-of-fit of the model or associated nested hypotheses.
Because the contingency table can be sparse when the number of items is
large, even for large sample surveys, we consider methods which focus on
lower-order margins of the table. Such methods are sometimes called limited
information tests. We consider their extension to complex survey data.

Keywords: latent variable models, limited information test statistics,
pairwise estimation

1 Introduction

Data on multiple categorical variables (items) are often collected in surveys
in order to measure a smaller number of underlying dimensions. Latent
variable models, as in factor analysis, may then be fitted in order to capture
these dimensions. In this paper we consider the problem of testing the
goodness of fit of such models as well as associated nested hypotheses.

Let y1, . . . , yp denote p measured variables of interest. For simplicity, we
just consider the case when each yi is binary. We are interested in models
which capture the association between the yi variables in terms of latent
variables z1, . . . , zq, where q < p. Let y′ = (y1, . . . , yp) denote the vector of
p binary observed variables. There are R = 2p possible response patterns
of the form y

′
r = (c1, c2, . . . , cp), where ci = 0 or 1. A parametric model is

specified by assuming that the values of y for units in the population are
generated by a model, where y = yr with probability πr(θ) ≥ 0, θ is a
parameter vector and

∑R
r=1 πr(θ) = 1.



For example, in one approach to the specification of the latent variable
model, the observed binary variables yi are taken to be manifestations of
underlying continuous variables y?i (e.g. Muthén, 1984). It is assumed that
yi = 0 if y?i ≤ τi and 1 otherwise, where τi is the threshold associated
with variable y∗i . For convenience, the distribution of y?i is assumed to be
standard normal. The factor model is of the form

y? = Λz + ε , (1)

where y? is the p-dimensional vector of the underlying variables, Λ is the
p×q matrix of loadings, and ε is the p-dimensional vector of unique variables.
In addition, it is assumed that z ∼ Nq(0,Φ) where Φ has 1’s on its main
diagonal, ε ∼ Np(0,Θ) with Θ a diagonal matrix, Θ = I − diag(ΛΦΛ′), and
Cov(z, ε) = 0. The parameter vector θ′ = (λ,ϕ, τ ) contains λ and ϕ, the
vectors of free non-redundant parameters in matrices Λ and Φ, respectively,
and τ , the vector of free thresholds.

Under this model, the probability of response pattern r is

πr(θ) = π (y1 = c1, . . . , yp = cp;θ) =

∫
. . .

∫
φp(x

?; Σy?)dy? , (2)

where φp(y
?; Σy?) is a p-dimensional normal density with zero mean, and

correlation matrix Σy? = ΛΦΛ′ + Θ.
In the case of complex survey designs, where the sample is drawn from

a finite population of size N , the pseudo log-likelihood is given by

lnL(θ; y) =
R∑
r=1

N̂r lnπr(θ) , (3)

where N̂r is the sum of survey weights across sample units with response
pattern r. The computation of the estimator which maximises this log-
likelihood is very demanding, however, since it requires the evaluation of
the p-dimensional integral in (2), which cannot be written in a closed form.

As a consequence, various limited information estimation methods have
been proposed. The most widely used methods involve three-stage estima-
tion (Jöreskog, 1994 ; Muthén, 1984). In this paper, we consider an alterna-
tive limited information method, which extends the pairwise likelihood (PL)
approach (Katsikatsou, Moustaki, Yang-Wallentin, and Jöreskog, 2012) to
complex designs. This approach is based on the bivariate marginal distribu-

tions of pairs of observed variables. Thus, π
(yiyj)
cicj (θ) is the probability that



yi = ci and yj = cj under the model. The pairwise pseudo log-likelihood is
given by:

pl(θ; x) =
∑
i<j

1∑
ci=0

1∑
cj=0

N̂
(yiyj)
cicj lnπ

(yiyj)
cicj (θ) , (4)

where N̂cicj is the sum of survey weights across sample units with yi = ci and
yj = cj . Maximizing this log-likelihood with respect to θ gives the pairwise

pseudo maximum likelihood estimator θ̂PL. This estimator only requires the
evaluation of up to two-dimensional normal probabilities, regardless of the
number of observed or latent variables. It may be argued that this estimator
is consistent for θ, provided the model holds at the population level.

2 Goodness-of-fit testing

Let πr denote the probability of response pattern r, either assumed to apply
to each unit in the population, or else we simply take πr to be a finite
population proportion. We wish to test the null hypothesis H0 : πr = πr(θ)
against the alternative H1 that πr is unrestricted, subject to

∑
πr = 1.

Even if maximization of the pseudo likelihood were feasible, there are
reasons against constructing goodness-of-fit tests based upon standard like-
lihood ratio or Pearson tests for all 2p possible response patterns, since the
resulting contingency table may be sparsE with many zero and small fre-
quencies which will distort the approximation to the chi-square distribution
(Reiser and VandenBerg, 1994). As a result, limited information goodness-
of-fit tests have been proposed by (Reiser, 1996, 2008 ; Bartholomew and
Leung, 2002 ; Maydeu-Olivares and Joe, 2005, 2006 ; Cai, Maydeu-Olivares,
Coffman, and Thissen, 2006 ; Cagnone and Mignani, 2007), at least for the
classical case of simple random sampling. These tests are based on marginal
distributions rather than on all 2p response patterns.

Vectors of marginal probabilities are defined as follows. Let π̇1 = P (yi =
1), i = 1, . . . , p be the p× 1 vector that contains all univariate probabilities
of a positive response to the ith item. Let π̇′2 be the

(
p
2

)
× 1 vector of

bivariate probabilities with elements, π̇ij = P (yi = 1, yj = 1), j < i. Vectors
of higher order marginal probabilities may be constructed similarly. Let πk
be the vector formed by stacking these vectors up to order k, so that it
has dimension s = s(k) =

∑k
i

(
p
i

)
. One can find an indicator matrix T of

dimension s × 2p and full row rank such that πk = Tkπ, where π is the
vector containing the probabilities πr for all 2p possible response patterns r.



Let p and pk denote the vector of weighted sample proportions corre-
sponding to π and πk, respectively. Then standard central limit theorems
for complex sampling give

√
n(p− π)

d−→ N(0,Σ), (5)

where n is the sample size. The covariance matrix Σ takes the multinomial
form, given by Σ = D(π)−ππ′, in the case of simple random sampling, but
not in general. It follows that:

√
n(pk − πk)

d−→ N(0,Σk), (6)

where Σk = TkΣTk. Because Tk is of full rank s, Σk is also of full rank s.
In the case of a simple null hypothesis H0 : π = π0, a Wald test statistic,

following Maydeu-Olivares and Joe (2005) for the classical case, is given by:

Lk = n(pk − πk0)′Σ−1k (pk − πk0), (7)

where πk0 = Tkπ0 and Lk is distributed as χ2 with s(k) degrees of freedom
as n goes to infinity.

The value k should be chosen to be sufficiently large for the model to be
identified from the joint moments up to k. We can derive results analogous
to Theorem 14.8-3 in Bishop, Fienberg, and Holland (1975):

θ̂PL − θ = B(p− π(θ)) +Op(n
−1/2), (8)

where B = J−1∆D−1π , Dπ = diag(π), J = ∆′D−1π ∆ is of dimension s × s
and ∆ = ∂π(θ)

∂θ
is of dimension 2p × dim(θ).

It follows that √
n(θ̂PL − θ)

d−→ N(0, J−1). (9)

Let ê = p−π(θ̂PL) be the vector of unstandardized residuals. A Taylor
series expansion gives:

π(θ̂PL) = π(θ) + ∆(θ̂PL − θ) +Op(n
−1/2) (10)

So

ê = p− π(θ)−∆B(p− π(θ)) +Op(n
−1/2) = (I −∆B)(p− π(θ)).

So from (5):
√
nê

d−→ N(0, (I −∆B)Σ(I −∆B)′). (11)



where (I−∆B)Σ(I−∆B)′ can be reduced to Dπ−ππ′−∆(A′A)−1∆′ under
simple random sampling.

Residuals of lower order are given by êk = pk − πk(θ̂PL) = Tkê. From
(11), we have that

√
nêk

d−→ N(0, Tk(I −∆B)Σ(I −∆B)′T ′k), (12)

where Tk(I − ∆B)Σ(I − ∆B)′T ′k = Tk(Dπ − ππ′ − ∆(A′A)−1∆′)T ′k. To
estimate the asymptotic covariance matrix of êk we estimate ∆ and A at
θ̂PL giving:

Tk(I − ÂB̂)Σ(I − ÂB̂)′T ′k

where B̂ = (Â′Â)−1Â′D̂
−1/2
π .

Finally, the test statistic is written as:

Lk = n(pk − πk(θ̂PL))′Σ̂+
k (pk − πk(θ̂PL)), k = 1, . . . , n (13)

where Σ̂+
k is the Moore-Penrose inverse of Σk(θ̂PL). Under the H0, this test

statistic is asymptotically distributed as χ2 with degrees of freedom equal
to the rank of Σk.
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