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Abstract

Calibration weighting has been usefully employed to adjust for unit nonresponse. Generalized cal-
ibration allows to distinguish among auxiliary variables between those that are useful to model unit
nonresponse (instrumental or model variables) and those that are used in the calibration constraints
(calibration variables). Since model variables need only be known on the respondents, generalized
calibration offers a particularly useful tool to deal with nonignorable nonresponse. Response to a
survey is the outcome of a complex process that involves several aspects: we assume that a part
(or all) of such a process may be measured by unobservable variables. Latent variable models
can be employed to extract either continuous constructs (latent trait models) or categorical ones
(latent class models) from a set of dichotomous/ordered manifest variables. We propose to use
such constructs as instrumental variables in the generalized calibration procedure. This allows to
include variables of interest among the set of manifest variables. The properties of the proposed
methodology are illustrated, then it is tested on a series of simulation studies and finally applied
to adjust estimates from the Italian Survey of Households Income and Wealth.
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1. Introduction
In this work we focus on the treatment of unit nonresponse in surveys when estimation of finite
population totals of a set of variables of interest is of concern. Let U = {1, . . . , k, . . . , N} be the
set of labels identifying a finite population of interest and let yk = (y1k, . . . , ymk, . . . , yMk) be
the value taken on unit k by theM -vector of variables of interest y. We are interested in estimating
its population total ty =

∑
U yk. We use the shorthand

∑
A for

∑
k∈A, with A ⊆ U an arbitrary

set. To this end a sample s of dimension n is selected from U using a sampling design p(s) with
first (second) order inclusion probabilities πk (πkl). Let Ik = 1 be the indicator variable for unit k
selected in the sample, so that P (Ik = 1) = πk = E{Ik}. Let dk = π−1

k and dkl = π−1
kl .

Unit nonresponse occurs and we denote by r ⊆ s the set of respondents. Let the response
indicator Rk = 1 if unit k ∈ r and 0 otherwise. Thus r = {k ∈ s|Rk = 1} and the response
mechanism is given by the distribution q(r|s). Usually these random indicator variables are as-
sumed independent of one another and of the sample selection mechanism, and we do the same
here. Then, the probability of responding to the survey is given by pk = P (Rk = 1|k ∈ s). This is
the two-phase approach where the sampling design is the first phase and the response mechanism
is the second phase and is based on the quasi-randomization model of Oh and Scheuren (1983).

Unit nonresponse is well known to harm the quality of estimates from a sample survey any time
those who respond are with some respect different from those who do not respond. Successful re-
duction of nonresponse bias may be achieved using powerful auxiliary information coupled with
a well-specified model either for unit response probabilities (response model) or for the variables
of interest (superpopulation models). In the survey setting, auxiliary information takes the form
of a set of auxiliary variables x whose value xk = (x1k, . . . , xqk) is known for k ∈ r and whose
population total tx is known or can be unbiasedly estimated with the Horvitz-Thompson estima-
tor t̂

HT
x =

∑
s dkxk. Let t?x denote the population total of x or its Horvitz-Thompson estimator

accordingly.



Calibration is a general tool to include auxiliary information at the estimation stage (Deville
and Särndal, 1992) and has been shown to be very useful in treating unit nonresponse as well
(see e.g. Särndal and Lundström, 2005). It pursues the construction of a single set of weights wk

for all variables of interest modifying specified initial weights (usually the dk’s), while satisfying
benchmark constraints on known auxiliary information, i.e.∑

r

wkxk = t?x. (1)

No explicit model is specified for the treatment of the nonresponse mechanism; it is implicitly
given by the calibration procedure. In fact, in general the probability of response pk is assumed
to be the inverse of a given link function of an unknown (but estimable) linear combination of
auxiliary variables, i.e. wk = dkF (xkγ). Given F (·) and estimated γ via the constraints given in
(1), the calibration estimator is t̂

CAL
y =

∑
r dkF (xkγ̂)yk.

As discussed so far, no discrimination is made within the set of auxiliary variables available:
a single set of variables is employed at the same time for nonresponse treatment, sampling error
reduction and coherence among estimates. There are cases, however, in which one has a good
reason to believe that nonresponse depends on a set of p model variables z, whose components
need not coincide with the components of the calibration vector x. This can be accommodated
in the calibration framework using “generalized” calibration introduced by Deville (2000) (see
also Kott, 2006) in which weights are given by wk = dkF (zkγ) and satisfy (1). Borrowing from
the econometric literature, the components of z that are not linear combinations of x are called
instrumental variables. Then, given F (·) and estimated γ, the generalized calibration estimator is
t̂

GCAL
y =

∑
r dkF (zkγ̂)yk. Note that the value of the model variables needs to be known only for

k ∈ r to compute p̂k = F (zkγ̂)−1. For this reason generalized calibration is particularly useful
for nonresponse treatment, because unlike other reweighting methods, it allows to deal with it even
when the variables that cause nonresponse are known only for the respondents. This is particularly
relevant when nonresponse is nonignorable, i.e. when the topic of the survey and, therefore, the
variables of interest influence the response probability of a unit. In fact, it is possible to introduce
the variables of interest (known only on the respondents) as instrumental variables for correcting
this type of nonresponse (Deville, 2000; Kott and Chang, 2010).

In this paper we work within the framework of generalized calibration and try to select a plau-
sible set of instrumental variables to deal with nonignorable nonresponse. In particular, we move
from noticing that response to a survey is the outcome of a complex process that involves sev-
eral aspects, from the topic of the survey and fieldwork organization to some of the variables of
interest or of the auxiliary variables. We assume that a part of such a process depends by unob-
servable variables. Latent variable models can be employed to extract either continuous constructs
(latent trait models) or categorical ones (latent class models) from a set of dichotomous/ordered
manifest variables (an introduction to these methods is provided in Section 2). This type of la-
tent variables is particularly relevant, although not limited, to attitude and behavioral surveys and
provide a measure of unobservable variables (like the “attitude towards politics” or other sensible
topics) that likely influence the “willingness to respond” of a unit. We, therefore, propose to use
such constructs as instrumental variables in the generalized calibration procedure. This allows to
include variables of interest among the set of manifest variables and also for the construction of a
single set of weights. The proposed methodology is introduced in Section 3, where its properties
are illustrated and variance estimators proposed, then tested on a series of simulation studies (Sec-
tion 4) and finally applied to adjust estimates from the Italian Survey of Households Income and
Wealth (Section 5).

2. Latent variable models
Latent variable models are multivariate regression models that link continuous or categorical man-
ifest, response variables to unobserved, latent variables. We focus here on categorical responses.
According to the nature of the latent phenomenon, we can distinguish between latent trait and
latent class models. A latent trait refers to a latent continuum which all individuals, based on their



pattern of responses on a set of observed variables, are mapped on. Latent classes, on the other
hand, refer to the categories of a latent variable that is discrete; such categories may but need not
be ordered along a continuum.

A latent trait model is essentially a factor analysis model for categorical data (see Bartholomew
et al., 2002). For simplicity, we consider binary responses and let ωk = (ω1k, . . . , ω`k, . . . , ωLk)
be the vector of these manifest variables observed for k ∈ r. Components of the manifest vector
may include components of the response variable vector y and/or of the model vector z. Denote
by q`k = Pr(ω`k = 1|θk), where θk = (θ1k, . . . , θjk, . . . , θJk) is the value taken on unit k
by the vector of J < L latent variables computed from ωk. The latent trait model is defined as
logit(q`k) = β`0 +

∑J
j=1 β`jθjk, for ` = 1, . . . , L, where β`0, . . . , β`J are model parameters. An

important special case is obtained by taking J = 1, i.e. a unidimensional latent trait model

logit(q`k) = β`0 + β`1θk, (2)

where it is usually assumed that θk ∼ N(0, 1). Model (2) is also referred to as a two parameter
logistic Rasch model, and is essentially a logistic regression except that the θk’s are not observed.

In Latent Class Models, on the other hand, the latent variable is supposed to be discrete (Lazars-
feld and Henry, 1968; Goodman, 1974). Let the latent class variable of unit k be denoted by ϑk, a
particular latent class by c and the number of latent classes by C. The full vector of responses of
unit k is again ωk, whilst h = (h1, . . . , hL) refers to a possible response pattern. Then the latent
class model can be expressed as P (ωk = h) =

∑C
c=1 P (ϑk = c)P (ωk = h|ϑk = c), in which

the probability of observing a response pattern h is a weighted average of class-specific proba-
bilities. The number of latent classes may be chosen using model selection criteria like AIC, BIC
or cAIC. Classification of units in latent classes provides an alternative way of building response
homogeneity groups to deal with nonresponse. In this case our latent variable θk = (θ1k, . . . , θCk)
is the indicator variable vector such that θck = 1 if ϑk = c.

3. Generalized calibration with latent variables
Once an estimate θ̂k of the latent variable θk is obtained, either using latent trait or latent class
models, it can be used in a generalized calibration framework as the instrumental variable z or
as a component of the vector of instrumental variables. Therefore, let zk = θ̂k or zk = (θ̂k, z

0
k)

(where z0
k represent instrumental variables different from θ̂k) and wk = dkF (zkγ). If we ignore

estimation of θk, the properties of t̂
GCAL
y =

∑
r wkyk are those illustrated, e.g., in Särndal and

Lundström (2005) or Kott (2006). It is a consistent estimator for ty if pk = F (zkγ)−1 or, alterna-
tively when t?x = tx, if E{ymk|xk} = xkβm, for m = 1, . . . ,M . In addition, all choices of F (·)
are asymptotically equivalent to the linear one, and this is helpful for variance estimation.

Under the two phase approach, we can estimate the variance of t̂GCAL
ym using

V̂2p(t̂GCAL
ym ) = V̂sam+V̂nr =

∑
k 6=l

∑
k,l∈r

dkl∆kl
ê?mk

p̂k

ê?lk
p̂l

+
∑

r

dk∆kk
(ê?mk)2

p̂k
+
∑

r

(1− p̂k)
p̂2

k

(dkêmk)2,

where ê?mk = ymk if t?x = t̂
HT
x or ê?mk = êmk = ymk−xkβ̂m if t?x = tx, β̂m = (

∑
r wkz

T
k xk)−1×∑

r wkz
T
k ymk is an estimate of the instrumental variable coefficient vector of the regression of ym

on x, and p̂k = F (zkγ̂)−1 (see e.g. Särndal and Lundström, 2005, Section 11.1).
Obtaining V̂sam for a particular design may be cumbersome because one has to start from the

respondents set. The “reverse” approach proposed by Shao and Steel (1999) simplifies consider-
ably the task. In general, since the response mechanism is independent of the sampling process, the
two can be exchanged in the decomposition of the variance. Using the reverse approach, we can
estimate the variance of t̂GCAL

ym using V̂rev(t̂GCAL
ym ) = V̂1 + V̂2, where V̂1 =

∑∑
r dkl∆klη̂

?
mkη̂

?
ml,

with η̂?
mk = xkβ̂m + Rk(ymk − xkβ̂m) if t?x = t̂

HT
x or η̂?

mk = Rkêmk = Rk(ymk − xkβ̂m) if
t?x = tx, and V̂2 =

∑
r dk(1− p̂k)ê2mk.

Note that the two variance estimators considered above require computation of coefficients and
residuals for each variable of interest. Since we are usually interested in estimating the total of



a whole set of variables of interest, a replication based variance estimator is also considered. In
particular, let a jackknife variance estimator be V̂jack(t̂GCAL

ym ) = nr−1
nr

∑
l∈r

(
(l)t̂GCAL

ym − t̂GCAL
ym

)2
,

where (l)t̂GCAL
ym =

∑
k∈r

(l)wkymk, nr is the size of r and the jackknife replicate weights are
given by

(l)wk = wk

(l)dk

dk
+
(
t?x −

∑
k′∈r

wk′

(l)dk′

dk′
xk′

)(∑
k′∈r

(l)dk′F (zk′ γ̂)zT
k′xk′

)−1

(l)dkF (zkγ̂)zT
k

and (l)dk = 0 when k = l and (l)dk = nrdk/(nr − 1) otherwise (see Kott, 2006, for a similar
proposal).

4. Simulation studies
We consider the Abortion data set formed by four binary variables extracted from the 1986 British
Social Attitudes Survey and concerning attitude to abortion. N = 379 individuals answered to the
following questions after being asked if the law should allow abortion under the circumstances
presented under each item: 1) the woman decides on her own that she does not want to keep the
baby; 2) the couple agrees that they do not wish to have a child; 3) the woman is not married
and does not wish to marry the man; 4) the couple cannot afford any more children. The data is
analyzed in Bartholomew et al. (2002) and found to hide a latent continuous variable, interpretable
as the attitude to abortion.

We focus on estimation of the total of the first two variables of interest, ty1 = 166 and ty2 =
225. At the population level, the latent trait θk is estimated for each unit using the two parameter
logistic Rasch model in (2). An auxiliary variable xk is generated as xk = 1 +

∑4
m=1 ymk + εk,

with εk ∼ N(0, 1). Its population total is assumed known. We draw 10,000 simple random samples
of dimension n = 100. For each sample nonresponse is simulated using a Poisson design with
probabilities defined for each unit according to various settings. In this work, for reasons of space,
we report only on the following three nonresponse models, that are obtained by varying the model
variable and the link function: Lin−y2 : pk = 1/(1.1 + 0.9y2k); Rak−y2 : pk = 1/ exp(0.2 +
0.5y2k); Rak−θ : pk = 1/ exp(0.2 + 0.5θk). In all settings, the population average for pk is
around 0.6. Three choices for the model variable are considered to compute a calibration estimator:
the variable of interest y2 (GCAL−y2), the auxiliary variable x (CAL−x) and the latent trait θ
(GCAL−θ). With these three choices weights are computed using the appropriate link function in
the R package sampling (Tillé and Matei, 2011) and then applied to estimate ty2 and ty1. For
each estimator we compute the Monte Carlo Bias, Variance and Mean Squared Error. Variance
estimation is conducted using estimators V̂2p, V̂rev and V̂jack illustrated in Section 3. For each
variance estimator its Monte Carlo expectation is computed, together with the empirical coverage
of a 95% confidence interval.

Table 1 reports the results for all simulation settings. We can note that when GCAL−y2 is
based on the true response model (Lin−y2 and Rak−y2) its bias is negligible, but its variance
is relatively larger than that of the other estimators. Although correlation between x and y2 is
relatively large (0.74) CAL−x, has the opposite behavior, with a large bias and a small variance
that places concern on coverage. GCAL−θ has, as expected, a very good performance in the
Rak−θ setting, but is also a very good compromise in the other two cases, when the interest is at
the estimation of both y1 and y2. As of variance estimators, V̂rev has a better behavior that V̂2p, but
V̂jack provides the best coverage.

5. Application to the Italian Survey on Household Income and Wealth
The Survey on Household Income and Wealth (SHIW) is conducted by the Italian central bank ev-
ery two years in order to study the economic behaviors of Italian households by collecting detailed
information on their income and wealth. The sample consists of about 8,000 households selected
from population registers using a complex two stage (municipality-household) sampling design.
Because of the sensitiveness of the issues surveyed, measurement error and unit nonresponse are
two major issues (for more details see Neri and Ranalli, 2011). Our goal here is to make inferences



Table 1: Monte Carlo Bias (B), Variance and MSE for each calibration estimator and simulation
setting. Monte Carlo mean and 95% confidence interval coverage for each variance estimator.

Model variable B VAR MSE V̂2p 95% cov V̂rev 95% cov V̂jack 95% cov
Lin−y2
t̂y2 GCAL−y2 1.1 397.4 398.5 339.9 92.8% 410.2 95.3% 500.4 97.1%

CAL−x -23.9 214.1 786.6 173.0 54.7% 213.9 62.5% 265.2 70.9%
GCAL−θ -13.3 245.7 421.6 204.8 81.0% 252.3 85.9% 310.4 90.1%

t̂y1 GCAL−y2 0.4 308.0 308.2 244.2 91.0% 299.8 94.0% 365.9 96.1%
CAL−x -8.0 257.8 322.1 198.8 87.9% 247.2 92.0% 304.6 95.0%
GCAL−θ 3.0 285.6 294.4 240.4 91.3% 296.6 94.4% 361.1 96.5%

Rak−y2
t̂y2 GCAL−y2 0.8 429.4 430.0 351.3 92.2% 429.8 94.9% 521.4 96.9%

CAL−x -20.3 220.4 633.8 175.4 64.2% 218.2 71.5% 269.7 79.0%
GCAL−θ -11.1 257.1 379.7 205.2 83.5% 254.4 88.2% 312.1 91.7%

t̂y1 GCAL−y2 0.4 320.6 320.8 248.8 90.8% 307.7 93.4% 374.1 95.7%
CAL−x -6.1 267.7 304.7 204.5 89.5% 255.5 92.9% 314.0 95.3%
GCAL−θ 4.3 312.1 330.4 242.0 90.1% 300.8 93.2% 365.2 95.2%

Rak−θ
t̂y2 GCAL−y2 11.9 441.4 583.4 353.9 89.3% 434.7 93.0% 526.4 95.5%

CAL−x -7.8 211.8 271.8 165.8 86.9% 205.7 91.3% 255.3 94.2%
GCAL−θ 0.5 249.6 249.9 194.8 90.7% 241.3 93.8% 297.4 96.2%

t̂y1 GCAL−y2 -4.4 306.4 325.6 247.2 90.5% 307.0 94.1% 373.0 96.1%
CAL−x -9.2 268.1 352.7 209.9 87.5% 262.5 91.8% 323.0 94.8%
GCAL−θ 0.4 305.5 305.7 244.0 91.3% 303.3 94.4% 368.9 96.4%

about the average yearly individual net wealth for the Italian population in 2008. Previous research
based on the SHIW data shows that nonresponse is non ignorable and depends on the true wealth.
It should be noted that the true wealth is not observed either for respondents because of measure-
ment error. Our approach uses survey responses related to wealth as proxies of the true wealth and
builds latent classes to be used as response homogeneity groups. In particular, we use the follow-
ing variables to build the vector ωk: the individual observed wealth class (ordinal variable with
five levels), the number of total call attempts needed to make the interview (ranging between 1 and
4) and six dummy indicators for the ownership of a secondary dwelling, of bonds, of agricultural
and of non-agricultural land, of other non-residential buildings and for the household living in a
deluxe dwelling. Using latent class analysis, we classify respondents into five latent classes. Then,
the predicted latent classes memberships are used as the instrumental variables zk.

As of calibration variables, we use two sources of auxiliary information. The first one is the
National statistical office and consists of the distribution of individuals according to some demo-
graphic variables: age (5 classes), gender, education (3 levels), nationality (italian/foreigner), job
status (employed/unemployed/inactive), geographical area (north/centre/south). The second one is
the Italian Department of the Treasury holding the administrative records of real estate owners and
consists of the distribution of individuals according to the value of the owned dwelling (5 classes).
Overall, the vector of population totals tx is made of q = 18 components.

Six different approaches to estimation of the mean household wealth are compared: (1) the
Hajek estimator (no nonresponse adjustment); (2) a two phase estimator in which response prob-
abilities are estimated via a logistic model that uses covariates known also for nonrespondents
(see details in Neri and Ranalli, 2011); (3) classical calibration using the aforementioned 18
calibration variables; generalized calibration using (4) latent classes θ̂k as model variables, (5)
manifest variables ωk as model variables, and (6) the individual observed wealth class (classes
of yk) as model variables. For cases (4), (5) and (6), since p < q, we use two step calibration
wk = dkF (zkγ̂1)F (xkγ̂2) to obtain final weights in which the first adjustment step F (zkγ̂1) is
obtained using the routine proposed in Chang and Kott (2008) and then, since it does not provide
calibrated weights, F (xkγ̂2) is obtained calibrating on tx using dkF (zkγ̂1) as starting weights.

It is worth noting that the true mean of the households’ wealth is unknown for this application.



Table 2: Estimated mean of the households’ wealth using different estimators, estimated jackknife
standard error and % coefficient of variation, standard deviation of the set of calibrated weights.

Method Estimated Mean Jackknife St Err %CV Weights St Dev
(1) Hajek estimator 271692.60 10551.63 3.88 2491.41
(2) Two phase estimator 267147.98 9523.05 3.56 2852.49
(3) Classical calibration 298468.40 9748.53 3.27 2656.21
Two step generalized calibration:
(4) Model var. – latent cl. 326824.48 11314.23 3.46 2853.14
(5) Model var. – manifest var. 354229.19 41704.42 11.77 8827.81
(6) Model var. – classes of y 337372.15 12118.12 3.59 3276.91

Table 2 reports the results for all the approaches with an estimate of the standard error using
jackknife. Nonresponse adjustments via calibration all provide an increase in the estimate. This is
reasonable since we expect wealthier household to be less collaborative. The estimated variance
of the generalized calibration estimators (4) − (6) is larger than that of classical calibration (3),
because of the increased complexity in the first step nonresponse adjustment. As already noted in
the simulations, generalized calibration that uses the variables of interest as model variables (cases
(5) and (6)) provide more variable estimators than the one that uses latent variables. By comparing
(5) with (4), it seems that the reduction in dimensionality performed by latent class analysis allows
for a more stable estimator, without loosing too much in terms of information. This is true also
when comparing (4) and (6), that have the same number of model variables. Finally, note that (4)
shows a way less variable set of weights as opposed to (5) and (6).
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