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Abstract

In order to overcome the problem of item nonresponse, random imputations
are often used because they tend to preserve the distribution of the imputed
variable. Among the methods of random imputation, the random hot-deck
has the interesting property that the imputed values are observed values. We
present a new random method of hot-deck imputation which enables us to
select the imputed values such that some balancing equations are satisfied and
such that the donors are selected in neighborhoods of the recipients.
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1 Introduction

Nonresponse is an important problem in survey. Indeed, the error caused by nonre-
sponse onto the estimates can be more severe than the error caused by the sampling
design. Nonresponse arises when a sampled unit does not respond to one or more
items of a survey. One differentiates item nonresponse (a sampled unit does not
respond to a particular question) from unit nonresponse (a sampled unit does not
respond to the entire survey). Reweighting procedures are often used to deal with
unit nonresponse whereas imputation methods are used to treat item nonresponse.
Imputation is a technique allowing filling the hole due to a missing value.

The imputation methods can be classified into two groups: the deterministic
imputation methods and the random imputation methods. The first group con-
tains the methods yielding the same imputed value if the imputation is repeated.
Among others deterministic imputation methods, one finds the ratio imputation,
the regression imputation, the respondent mean imputation, and the nearest neigh-
bor imputation (Chen and Shao, 2000). This group of methods produces good
totals estimations. Nevertheless they often fail to estimate quantiles. The second
group contains the methods yielding different imputed values if the imputation is
repeated. Among these random methods, one finds the multiple imputation meth-
ods presented in Rubin (1987), the imputation with added residuals considered
in Chauvet et al. (2010) and in Chauvet et al. (2011), and the random k-nearest
neighbor imputation. Unlike the deterministic imputation methods, the random
imputation methods have the advantage to tend to preserve the distribution of the
imputed variable. Nevertheless such methods imply the presence of an additional
term in the variance estimator due to the randomness of imputation, which is called
the imputation variance. Many authors have been interested in minimizing the im-
putation variance. For instance, Kalton and Kish (1981) propose to select donors
among the respondents without replacement and with a stratification of responses.
Chen et al. (2000) propose for this aim to adjust the imputed values, Kim and
Fuller (2004) and Fuller and Kim (2005) use the fractional hot-deck imputation,
and Chauvet et al. (2010, 2011) propose a balanced random imputation method
consisting in randomly select residuals.

One can alternatively classify the imputation methods into the donor imputa-
tion methods and the predicted value imputation methods. One denotes by donor
imputation methods the fact that the value of a respondent is assigned to a non-
respondent. The unit providing the value is called a donor and the unit receiving
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the value is called a recipient. A hot-deck method is a donor imputation method
where a missing value is replaced with an observed value extracted from the same
survey. The reader can for instance refer to Andridge and Little (2010) for a review
of hot-deck imputation. In contrast, the predicted value imputation methods use
function of the respondents values to predict the missing values.

In this paper, we propose a new method of random hot-deck imputation. This
method, even though it is random, has the interesting property to reduce the im-
putation variance compared to other random imputation methods. We called this
method the balanced k-nearest neighbor imputation method.

2 Notation and Concepts

Consider a finite population U = {1, 2, . . . , i, . . . , N} and the variable of interest
y = (y1, . . . , yi, . . . , yN )′. In a first phase, a random sample S of size n is drawn
with a given sampling design p (S). Let πi = Pr (i ∈ S) denote the first order in-
clusion probability of unit i and let wi denote its Horvitz-Thompson weights 1/πi
(Horvitz and Thompson, 1952). If a census is considered, the inclusion probabilities
and the design weights are equal to 1. In a second phase, a subset of respondents
Sr = {r1, r2, . . . , rnr} is drawn from S with an usually unknown conditional distri-
bution q (Sr|S); the values yi of the variable of interest are known for the units of Sr
only. Let Sm = {m1,m2, . . . ,mnm} denote the complement of Sr in S, i.e. the sub-
sample of S containing the units with missing data (the nonrespondents). Note the
respective sizes of these subsets are nr and nm. It is supposed that the units respond
independently from each other. Then, each unit i ∈ S has an usually unknown re-
sponse propensity θi = Pr (i ∈ Sr|i ∈ S) and q (Sr|S) =

∏
i∈Sr

θi
∏

i∈Sm
(1− θi). In

a third phase, nonresponse is corrected through imputation. Imputed values y∗j ,

j ∈ Sm are drawn with a conditional distribution I
(
y∗j |S, Sr

)
.

The aim is to estimate the population total ty =
∑

i∈U yi of the variable of
interest y. In the presence of complete response to the variable of interest y the
estimator t̂y =

∑
i∈S wiyi is adequate. In the presence of nonresponse, the previous

estimator is intractable and the imputed estimator t̂Iy =
∑

i∈Sr
wiyi +

∑
i∈Sm

wiy
∗
i

is used. A vector xi = (xi1, xi2, . . . , xiq)
′ of q auxiliary variables is assumed to be

known for each unit i in the sample S.
The total variance of an imputed estimator (for a total or another statistic of

interest) θ̂I can be written

Var
(
θ̂I

)
= VarpEqEI

(
θ̂I

)
+ EpVarqEI

(
θ̂I

)
+ EpEqVarI

(
θ̂I

)
(2.1)

where the subscripts p, q and I represent respectively the sampling mechanism,
the nonresponse mechanism, and the imputation mechanism described above. The
first term in (2.1) represents the sampling variance, the second term represents the
nonresponse variance and the last term represents the imputation variance.

3 Methodology for random hot-deck donor imputation
methods

Random hot-deck donor imputation consists in filling a missing value with an ob-
served value extracted from the same survey; for each nonrespondent, a donor is
randomly chosen among the respondents. Consequently, random hot-deck donor
imputation can be achieved through the realization of a random matrix φ = (φij),



(i, j) ∈ Sr × Sm such that
φij = 1y∗j=yi . (3.1)

As exactly one donor is selected for each nonrespondent, φ must satisfy∑
i∈Sr

φij = 1, for each j ∈ Sm. (3.2)

However, no conditions are set in
∑

j∈Sm
φij for i ∈ Sr as a respondent can impute

several nonrespondents. Taking the conditional expectation both sides of equa-
tion (3.1) generates a matrix of imputation probabilities ψ = (ψij), (i, j) ∈ Sr×Sm

ψij = EI (φij) = EI

(
1y∗j=yi

)
= Pr

(
y∗j = yi|S, Sr

)
.

By definition, ψ satisfies∑
i∈Sr

ψij = 1, for each j ∈ Sm, (3.3)

0 ≤ ψij ≤ 1, for each (i, j) ∈ Sr × Sm. (3.4)

The considered methodology for random hot-deck donor imputation is therefore
operated in two stages. In the first stage, the matrix of imputation probabilities
(ψ) is defined and in the second stage a realization of the matrix of imputation
(φ) is carried out. Even though the matrix of imputation probabilities is usually
explicitly defined, the matrix of imputation can be hard to generate.

3.1 Random k-nearest neighbor imputation method

We define here the k-nearest neighbors of a nonrespondent unit j ∈ Sm (knn(j)) as
its k most similar respondents units i ∈ Sr, i.e. knn(j) = {i ∈ Sr|rank (d(i, j)) ≤ k} .
It is here considered that d(·, ·) is the Mahalanobis distance define through the

auxiliary variables, d(i, j) =
{

(xi − xj)
′ S−1 (xi − xj)

}1/2
where S is the variance-

covariance matrix of the auxiliary variables. If the values of the auxiliary variables
are known on the sample level only, S must be estimated.

The random k-nearest neighbor imputation method (kNN) consists in filling the
missing value of an unit j ∈ Sm with the value of one of its k-nearest neighbors
selected randomly with equal probabilities. It results in the matrix of imputation

probabilities ψ(k) =
(
ψ
(k)
ij

)
, (i, j) ∈ Sr × Sm with ψ

(k)
ij = 1/k1i∈knn(j). Therefore,

the matrix of imputation probabilities related to the kNN is a matrix containing
exactly k non-null coefficients in each column and all these non-null coefficients are
equal to 1/k. This particular matrix of imputation probabilities is the starting point
of the method proposed in this paper, the balanced k-nearest neighbor imputation
method (bkNN).

4 Balanced k-nearest neighbor imputation method

The new method we propose is a method of random hot-deck imputation. This
method relies on two main ideas. The first idea is that the donors are chosen
in neighborhoods of the recipients; for each nonrespondent, a donor is randomly
selected among its k nearest neighbors. The second idea is that the imputation
process conserves the estimator of the total of the auxiliary variables; if the auxiliary
variables suffered from nonresponse, their imputed estimator of the total would
match their total estimator under complete response. Hence, the bkNN involves



a matrix of imputation probabilities ψ(bk) =
(
ψ
(bk)
ij

)
, (i, j) ∈ Sr × Sm such that

ψ
(bk)
ij 6= 0 only if i ∈ knn(j) and such the underlying imputation mechanism implies

that conditionally on the sampling mechanism and on the nonresponse mechanism
t̂Ix = t̂x. It implies that the method we propose involves a matrix of imputation

probabilities ψ(bk) =
(
ψ
(bk)
ij

)
and a matrix of imputation φ(bk) =

(
φ
(bk)
ij

)
, (i, j) ∈

Sr × Sm, such that ψ
(bk)
ij 6= 0 only if i ∈ knn(j) and such that∑

j∈Sm

wj

∑
i∈Sr

ψ
(bk)
ij xi =

∑
j∈Sm

wjxj (4.1)

∑
j∈Sm

wj

∑
i∈Sr

φ
(bk)
ij xi =

∑
j∈Sm

wjxj (4.2)

EI

(
φ
(bk)
ij

)
= ψ

(bk)
ij (i, j) ∈ Sr × Sm (4.3)

are satisfied or almost.
It can be shown that if a strict linear relation between the variable of interest

and the auxiliary variables holds, the bkNN provides imputed estimators of the total
of the variable of interest with a nearly null imputation variance, i.e. VarI

(
t̂Iy
)
≈ 0.

Therefore, if the relation between the variable of interest and the auxiliary variables
is close to a linear relation, the bkNN is particularly effective in the sense that it
is a random imputation method with an imputation variance of the total estimator
negligible.

Algorithms 1 and 2 present how the matrix of imputation probabilities ψ(bk) and
the matrix of imputation φ(bk) can be obtained. In order to simplify notation, the
indices i = 1, . . . , nr and j = 1, . . . , nm stand in the Algorithms for the respondent
units and for the nonrespondent units respectively.

The main idea of Algorithm 1 is to find a matrix of imputation probabilities
ψ(bk) close to the matrix of imputation probabilities relative to the kNN, ψ(k),
and satisfying (4.1). The starting point of this Algorithm is therefore the matrix
ψ(k). Throughout the process, a null coefficient remains null. The bkNN therefore
provides, for each particular nonrespondent, a donor randomly chosen among its
k nearest neighbors. Starting with ψ(k) in step 1, calibration and normalization
are then alternated in step 2. The calibrations provide matrices ψ(2l) for l ≥ 1,
with nonnegative coefficients and satisfying equation (4.1). However, these matri-
ces ψ(2l) do not necessarily satisfy (3.3) and (3.4). The normalizations provide
matrices ψ(2l + 1) for l ≥ 1 satisfying (3.3) and (3.4) but not necessarily sat-
isfying equation (4.1). Taking, in step 3, the limit of the sequence ψ(2l + 1) for
l ≥ 1 provides, if the limit exists, the matrix ψ(bk) with the required properties, i.e.
satisfying equations (3.3), (3.4), and (4.1) simultaneously.

Once matrix ψ(bk) has been obtained, a realization of matrix φ(bk), and thus a
random selection of donors, has to be carried out. As matrix ψ(bk) satisfies equa-
tion (4.1), a necessary and sufficient condition for matrix φ(bk) to satisfy equa-

tion (4.2) is that it satisfies
∑

j∈Sm
wj
∑

i∈Sr
φ
(bk)
ij xi =

∑
j∈Sm

wj
∑

i∈Sr
ψ
(bk)
ij xi

which can be rewritten

∑
j∈Sm

∑
i∈Sr

wjψ
(bk)
ij xi

ψ
(bk)
ij

φ
(bk)
ij =

∑
j∈Sm

∑
i∈Sr

wjψ
(bk)
ij xi. (4.4)

This equation is a typical equation of balancing. However, as a donor can be used to
impute several nonrespondents, it is a matter of a selection with replacement. The



Algorithm 1 Procedure to obtain the matrix of imputation probabilities ψ(bk)

Step 1: • Set ψ(1) = ψ(k), the matrix of imputation probabilities relative to the kNN.

• Add a constant auxiliary variable if none of the auxiliary variables is a con-
stant.

• Let Xr be the matrix of dimension nr×q whose i-th row is xi, for i = 1, . . . , nr.

• Let t ∈ Rq be the vector
∑
j wjxj .

Step 2: For l ≥ 1,

• Let d ∈ Rnr be the vector di =
∑
j ψ(2l − 1)ijwj for i = 1, . . . , nr.

• Obtain g ∈ Rnr through calibration on Xr, with initial weights d, with total
t, and with the raking method.

• Let ψ(2l) be the matrix defined as ψ(2l)ij = ψ(2l − 1)ijgi .

• Let ψ(2l + 1) be the matrix defined as ψ(2l + 1)ij =
ψ(2l)ij∑
i ψ(2l)ij

.

Step 3: Set ψ(bk) = liml→+∞ψ(2l + 1).

Cube Method proposed by Deville and Tillé (2004) permits to select balanced sam-
ples, but it is adequate for the purpose of balanced sampling without replacement.
As a solution, Chauvet et al. (2011) propose to achieve balanced sampling with
replacement through balanced sampling without replacement within a population
of cells. Indeed, it is a matter of selection in a population of cells (i, j) ∈ Sr × Sm
without replacement as a nonrespondent unit j ∈ Sm is imputed exactly once. The
procedure to obtain matrix φ(bk) use this idea and is presented in Algorithm 2. In
step 1, a vector of strata is created. To each nonrespondent j ∈ Sm, a stratum
consisting of the cells (i, j) for i ∈ Sr is attached. Selection with replacement of
one donor for each nonrepondent can thus be achieved through selection of exactly
one unit in each stratum. In step 2, balancing variables are defined and in step
3 a sample is selected through stratified balanced sampling. A suitable stratified
balanced sampling algorithm for this purpose is proposed in Hasler and Tillé (2013).
Indeed, it permits to select exactly one donor in each stratum while satisfying as
good as possible the balancing equations. The selected sample is a vector and this
one provides φ(bk) in step 4 by filling a column matrix of the same dimension than
initial matrix ψ(bk). Algorithm 2 produces a matrix of imputation φ(bk) satisfying
equations (3.2) and (4.3), and satisfying (or almost) equation (4.4). As a matter of
fact, matrix φ(bk) satisfies or almost

∑
i∈Sr

wjψ
(bk)
ij xi

ψ
(bk)
ij

φ
(bk)
ij =

∑
i∈Sr

wjψ
(bk)
ij xi

for each j ∈ Sm, which is stronger than (4.4).

5 Conclusion

In this article, we have proposed a new method of random hot-deck imputation
which we call the balanced k-nearest neighbor imputation method. This method
has the interesting properties to be a donor imputation and to select the donors in
neighborhoods of the recipients. As it is random, this method is adequate to total
as well as to quantiles estimation. Moreover, this method cancels the imputation
variance of the total of the auxiliary variable. It implies that the imputation variance



Algorithm 2 Procedure to obtain the matrix of imputation ψ(bk)

Step 1: Let h be the vector of dimension nrnm × 1, whose first nr coordinates equal 1,
whose next nr coordinates equal 2, and so on up to nm.

Step 2: (a) Let aij = wjψ
(bk)
ij xi for i = 1, . . . , nr; j = 1, . . . nm.

(b) Construct the matrix A of dimension nrnm × q
A =

(
a11 a21 · · · anr1 a12 a22 · · · anrnm

)′
.

(c) Let π̇ be the vector composed of the columns of matrix ψ(bk).

Step 3: Select a stratified sample balanced on A with inclusion probabilities π̇ with the
method proposed by Hasler and Tillé (2013). The vector of integers that specifies
the stratification is vector h.

Step 4: Obtain the matrix φ(bk) by filling by column a matrix of dimension nr × nm with
the selected sample.

of the target estimator t̂Iy is reduced; it can even cancel if the relation between the
variable of interest and the auxiliary variables is strictly linear.
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