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Abstract

In this paper we review various stochastic processes including autoregressive processes developed recently for

modeling data from financial contexts. In particular, we consider different Laplacian models and their gener-

alizations. A general framework for Gaussian and non-Gaussian autoregressive models and their extensions is

also developed and studied in detail with respect to Brownian-Laplace processes. Fractional extensions are also

considered. An illustration is made with respect to a real data on exchange rates of Indian rupee and U.S. dollar.
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1. Introduction
In modelling financial data, a number of distributions such as the gamma, inverse Gaussian, Laplace
or variance gamma, Meixner and generalized hyperbolic distributions have been used recently. Popular
examples of Lévy processes are generalized hyperbolic processes and their subclasses, variance gamma
processes and CGMY processes. A Lévy process based on the generalized Laplace (variance-gamma)
distribution alone has no Brownian component, only linear deterministic and pure jump components.
Reed (2007) and Küchler and Tappe (2008a,b) have introduced some generalizations of Laplace distri-
bution and used them in the context of modelling option prices and stock prices data. Reed (2007)
introduced the generalized normal-Laplace (GNL)(Brownian-Laplace) distribution and discussed many
properties. The Black-Scholes theory of option pricing was originally based on the assumption that asset
prices follow geometric Brownian motion. For such a process, the logarithmic returns (log(Pt+1/Pt)) on
the price Pt are independent and identically distributed random variables. The generalized Brownian
Laplace distribution adds a Brownian component to the Lévy process. Fractional Laplace motion is
used recently to model hydraulic conductivity fields in geophysics, and it may also prove useful in mod-
eling financial time series. Hürlimann (2012) introduced an AR(1) process for inflation modeling with
Brownian Laplace innovations and apply the process for modeling consumer price indices of Switzerland.
They show that AR(1) model with Brownian Laplace noise has the best goodness of fit.

2. Brownian - Laplace distribution
A random variable X is said to follow the Brownian-Laplace (BL) distribution if its characteristic
function (cf), is given by

ψX(s) =

[
exp(iνs− τ2

2
s2)

](
αβ

(α− is)(β + is)

)
.

When τ → 0, the distribution tends to an asymmetric Laplace distribution. When α → ∞, β → ∞,
it tends to a Normal distribution. When β →∞, the distribution exhibits fatter tail than the Normal
only in the upper tail. When α → ∞, the distribution exhibits extra-normal variation only in the
lower tail. Brownian-Laplace distribution is a mixture of convolutions of Gaussian and non-Gaussian
random variables. The Brownian-Laplace distribution belongs to class L. The Normal-Laplace is
infinitely divisible and not g.i.d.. Similar to lognormal distribution we can consider log Brownian-
Laplace distribution, which is also known as double Pareto-lognormal distribution. The mean and



variance of the distribution are given by

E(X) = ν +
1

α
− 1

β
and V ar(X) = τ2 +

1

α2
+

1

β2
.

3. Generalized Brownian-Laplace Distribution
Reed (2005) introduced the generalized Brownian-Laplace (GBL) distribution with cf

ϕX(s) =

[(
exp(iνs− τ2s2/2)

) αβ

(α− is)(β + is)

]δ
.

This distribution arises as the convolution of independent normal and generalized Laplace distribution
(Kotz et al., 2001). It is a generalization of the normal-Laplace distribution introduced by Reed and
Jorgensen (2004). Hence X can be represented as

X
d
= Z +G1 −G2,

where Z, G1 and G2 are independent with Z ∼ N(δν, δτ2) and G1 and G2 are independent gamma
random variables with scale parameters α and β respectively and having common shape parameter δ.
When δ = 1, G1 and G2 are exponentially distributed and hence the model reduces to the normal-
Laplace distribution. Lishamol and Jose (2009), Jose et al. (2008) consider the case when δ = 1. When
α = β, G1−G2 corresponds to the generalized Laplacian distribution. When α = β, it corresponds to the
generalized asymmetric Laplace distribution, also known as variance-gamma distribution (See Madan
et al. (1998) and Madan and Seneta (1990)). Another generalization can be obtained by replacing δ by
δ1 and δ2 respectively in the last two factors, in which case G1 and G2 are distributed as gamma but
not identical. Then we get the bilateral gamma density of Küchler and Tappe (2008a).

E(X) = δ

(
ν +

1

α
− 1

β

)
and V ar(X) = δ

(
τ2 +

1

α2
+

1

β2

)
.

Higher order cumulants are,

kr = (r − 1)! δ(α−r + (−β)−r), for integers r > 2.

GBL distribution is infinitely divisible. GBL distribution is self-decomposable.

4. Brownian - Laplace Motion

Definition 1 Consider a Lévy process {Xt}t≥0 say for which the increments Xt+τ −Xτ have cf (ψ(s))t

where ψ is the cf of the GBL(ν, τ2, α, β, δ) distribution. Laplace motion has an infinite number of jumps
in any finite time interval (a pure jump process). The extension considered here adds a continuous
Brownian component to Laplace motion leading to the name Brownian-Laplace motion.

The incrementsXt+τ−Xτ of this process will follow a GBL(ν, τ2, α, β, δt) distribution and will have fatter
tails than the normal. Brownian-Laplace Motion seems to provide a good model for the movement of
logarithmic prices. Option pricing for assets with logarithmic prices following Brownian-Laplace motion
is discussed in Reed (2007). We consider an asset whose price St is given by

St = S0 exp(Xt)

where Xt is a Brownian-Laplace motion with X0 = 0 and parameters ν, τ2, α, β, δ.



4.1. Fractional Brownian Motion
Fractional Laplace motion is obtained by subordinating fractional Brownian motion to a gamma process.
Fractional Brownian motion with parameter H ∈ (0, 1) is a centered Gaussian process {BH(t), t ≥ 0}
with BH(0) = 0 and the covariance function

E[BH(t)BH(s)] =
σ2

2
(|t|2H + |s|2H − |t− s|2H), t, s ≥ 0 (1)

where σ2 =VarBH(1). Fractional Brownian motion exhibits self-similarity with parameter H, i.e. for
each c > 0 we have

{BH(ct), t ≥ 0} d
= {cHBH(t), t ≥ 0}

in the sense that all finite dimensional distributions of the two processes are the same. Moreover, the
stationary increment process {Zk = BH(k) − BH(k − 1)}, called fractional Gaussian noise, exhibits
long-range dependence when H ∈ (1/2, 1), i.e. its covariance function γ(k) = E(ZiZi+k) tends to zero
so slowly that the series

∑∞
k=1 γ(k) diverges, for details see Kozubowski et al. (2006).

5. Geometric Brownian-Laplace Motion
The distribution named as the double Pareto-lognormal (DPLN) distribution arises as that of the
state of a geometric Brownian motion with lognormally distributed initial state, after an exponentially
distributed length of time. DPLN distribution has applications in modeling earnings and income dis-
tributions, human settlement sizes, stock price returns etc. Jose and Manu (2011) developed a product
autoregressive model with DPLN and log-Laplace distributions.

6. Brownian - Laplace processes

Xn = aXn−1 + εn; a ∈ (0, 1) and ∀ n > 0

ψXn(s) = ψXn−1(as) ψεn(s)

ψε(s) =
ψX(s)

ψX(as)

=

[
exp

(
iν(1− a)s− τ2(1− a2)

2
s2
)](

(α− ias)
(α− is)

(β + ias)

(β + is)

)
ε
d
= Z + E∗1 − E∗2

Z ∼ N(ν(1− a), τ2(1− a2)), E∗1 ∼ ET (a, α) and E∗2 ∼ ET (a, β)

Brownian-Laplace model is free from zero deficiency. If X0
d
= BL(ν, τ2, α, β), then the process is

strictly stationary. If X0 is distributed arbitrarily, then also the process is asymptotically Markovian
with Normal-Laplace distribution.

Theorem 1 The AR(1) process Xn = aXn−1 + εn, a ∈ (0, 1) is strictly stationary Markovian with
Normal-Laplace marginal distribution if and only if {εn} are independently and identically distributed

as ε
d
= Z + E∗1 − E∗2 provided X0 ∼ BL(ν, τ2, α, β) and is independent of ε1.

7. Estimation of parameters

E(εn) = (1− a)(ν +
1

α
− 1

β
) and V ar(εn) = (1− a2)(τ2 +

1

α2
+

1

β2
).



Higher order cumulants are,

kr = (r − 1)!(1− ar)(α−r + (−β)−r), for integers r > 2.

From the cumulants the third, fourth and fifth moments can be obtained directly since k3 = µ3,
k4 = µ4 − 3µ22 and k5 = µ5 − 10µ2µ3.

8. First order Generalized Brownian-Laplace Autoregressive processes

Xn = aXn−1 + εn; a ∈ (0, 1) and ∀ n > 0

ϕε(s) =

[
exp

(
iνδ(1− a)s− τ2δ(1− a2)

2
s2
)]

×
[

(α− ias)
(α− is)

]δ [(β + ias)

(β + is)

]δ
.

Hence the distribution of ε is the convolution of Gaussian and non-Gaussian (generalized exponential
tailed) random variables.

Generation of the process
This can be generated as ε = Z +G∗1 −G∗2, where Z follows normal and G∗i , i = 1, 2 are independently
distributed as δ-fold convolution of exponential tailed random variables (see Jose and Manu (2011)).
Expanding the cgf and solving, the moments of the sequence of innovations {εn} are,

E(εn) = (1− a) δ (ν +
1

α
− 1

β
) and V ar(εn) = (1− a2) δ (τ2 +

1

α2
+

1

β2
)

kr = (r − 1)! δ(1− ar)(α−r + (−β)−r), for integers r > 2.

Generalized Brownian-Linnik (α-Laplace) Distribution
The characteristic function has the form,

φ1(s) =
(
exp(iνs− τ2s2/2)

)δ1 ( λα

λα + |s|α

)δ2
.

We have the following special cases for different parameter values.

α δ1 δ2 Distribution

2 1 1 Brownian-Laplace

2 δ δ Generalized Brownian-Laplace

α 1 1 Brownian α-Laplace

2 0 δ Generalized Laplace

α 0 1 Linnik (α-Laplace)

α 0 δ Pakes Generalized Linnik

Autoregressive models can be developed in all these cases. This establishes the wide applications of the
Generalized Brownian α-Laplace distribution

9. Applications
It is the first attempt to combine Gaussian and non-Gaussian marginals to model time series data.
Brownian-Laplace distribution has applications in financial modeling, Levy process, Brownian motion



etc. In financial modeling, it is is a more realistic alternative for Gaussian models as logarithmic price
returns do not follow exactly a Normal distribution. Exponentiated Brownian-Laplace distribution
(Double Pareto-Lognormal distribution) provides a useful parametric form for modeling size distribu-
tions. Since generalized Brownian Laplace distributions possess the additive property, one can construct
a Levy motion for which the increments follow the same distribution. The results are further extended
to the generalized Brownian-α-Laplace distribution with a variety of applications in many areas. Thus
by selecting suitable convolutions of Gaussian and non-Gaussian distributions as stationary marginal
distributions of autoregressive processes we can bring Gaussian and non-Gaussian time series models to
a unified framework.

10. A case study- Financial modeling
Here we consider another variant of generalized asymmetric Laplace distribution, which is a special case
of generalized Brownian-Laplace distribution. In particular we consider the form considered by Küchler
and Tappe (2008a,b). They refer to this as the Bilateral gamma distribution, which corresponds to the
difference of two independent gamma variables so that the cf is given by

ψ(s) =

[
α

α− is

]δ1 [ β

β + is

]δ2
.

We can consider a special case of this bilateral gamma distribution(δ1 = δ2 = δ) namely generalized
Laplacian (GL) distribution. The cf of generalized Laplacian distribution is given by

φ(t) =
eiθt

(1 + 1
2σ

2t2 − iµt)δ
, −∞ < t <∞, σ > 0,

−∞ < µ <∞, where α =
√
κ
σ , β =

√
2

σκ . This cf can be factored as

φ(t) = eiθt

(
1

1 + i σ√
2
κt

)δ (
1

1− i σ√
2κ
t

)δ
, (2)

where κ > 0, µ = σ√
2

(
1
κ − κ

)
. We shall use the method of moments, generalized method of moments

due to Tjetjep and Seneta (2006) and method of conditional least squares due to Klimko and Nelson
(1978).

Under the method of moments, the estimates can be obtained by equating the population moments
and the sample moments. The resulting equations are not easily tractable. Hence we use the generalized
method of moments (GMOM) due to Tjetjep and Seneta (2006).

In Conditional Least Square (CLS) method of estimation, we try to minimize the sum of squared
deviations about conditional expectations. Then the conditional estimators of the parameters can be
obtained by minimizing

E =
k∑

n=1

[xn − E(Xn | Xn−1 = xn−1)]
2 =

k∑
n=1

[xn − (axn−1 + (1− a)[θ + τµ])]2 .

Solving the normal equations, we get

â =

∑k
n=1 [xn − (θ + τµ)] [xn−1 − (θ + τµ)]∑k

n=1 [xn−1 − (θ + τµ)]2
.

θ̂ =
1

(1− a)

1

k

[
k∑

n=1

xn −
a

µ

k∑
n=1

xn−1

]
− τµ.



δ̂ =
1

(1− a)µ

1

k

[
k∑

n=1

xn − a
k∑

n=1

xn−1

]
− θ

µ
.

µ̂ =
1

(1− a)τ

1

k

[
k∑

n=1

xn − a
k∑

n=1

xn−1

]
− θ

τ
.

From the data, the summary statistics obtained are as follows.

Mean value = −2.6423× 10−5,

Variance = 1.2632× 10−6,

Coefficient of skewness = −0.6657.

Now pre-fixing θ = 0, the estimates of the parameters obtained by the GMOM method are,

τ = 0.10576,

σ = 0.003447,

κ = 1.05256.

It is verified that these estimated values make M equal to zero, showing that the model is consistent
with the data.
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Kotz, S., Kozubowski, T.J., Podgórski, K. (2001). The Laplace distribution and Generalizations: A Revisit with
Applications to Communications, Economics, Engineering and Finance. Birkhäuser, Boston.
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