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Abstract 
 

The logic behind statistical inference is difficult for students to understand. Recent 
research in statistics education focuses on learners’ informal and intuitive ideas of 
inferential reasoning rather than on the mastery of formal mathematical procedures. 
We introduce a computer-based training environment (a “data game“) to shape 
intuition for inference in the context of a particular type of statistical decision problem. 
In change-point detection tasks, one must decide if a process is running smoothly or if 
it is out of control. In our data game a mechanism produces data sequentially with a 
likely built-in shift in location at random time. The task for the students is to detect if 
and when the mechanism has changed the level of produced data as early as possible 
but without raising false alarms. The data game is embedded in a data analysis 
environment. We discuss the relation between change point detection and informal 
inference, the game itself as well as its relation to inferential reasoning.  
 
Keywords: Statistics education, intuitive reasoning, statistical literacy, technological 
learning environments  
 
1. Introduction 
Most of our knowledge about the empirical world is based on careful generalizations 
from observations to a wider universe. Methods of statistical inference have a central 
role in evidence-based knowledge acquisition; they are used in all of the empirical 
sciences to ensure the legitimacy of new knowledge. The mathematical methods 
created for that purpose are based on advanced concepts of probability in combination 
with different epistemological positions grown in the history of scientific reasoning. 
For several decades, as Zieffler, Garfield & delMas (2008) explicate, psychologists 
and education researchers have studied and documented the difficulties people have 
making inferences about uncertain outcomes. Researchers have pointed to various 
reasons for these difficulties including: the logic of statistical inference, students’ 
intolerance for ambiguity (Carver 2006), and students’ inability to recognize the 
underlying structure of a problem. Other research has suggested that students’ 
incomplete understanding of statistics such as distribution, variation, sampling, and 
sampling distributions may also play a role in these difficulties. Some recent studies 
(e.g., Haller & Krauss 2002) indicate that even empirical researchers do not always 
understand these methods or use them correctly. As far as teaching in school is 
concerned, the issue is not to teach complex formal methods of inferential statistics 
but to initiate a way of thinking that helps to make sound decisions in a world of 
uncertainty where progress in many areas is characterized by the analysis of empirical 
data.  
 
After summarizing some major aspects of the recent discussion of informal inferential 
reasoning (IIR) in Section 2, we argue that change point detection tasks constitute an 
ideal environment to explore students’ IIR (Section 3). We then present the data game 
environment Epidemic, discuss its design and how it provides informal experiences to 
strengthen sound intuition in situations of decision-making under uncertainty. 
 
 
 



2.  Informal Inferential Reasoning 
Inferential statistics is the scientific method for evidence-based knowledge acquisition. 
However, the logic behind statistical inference is difficult for students to understand. 
Statistical inference requires going beyond the data at hand, either by generalizing the 
observed results to a wider universe or by drawing a more profound conclusion about 
the relationship between the variables, e.g., determining whether a pattern in the data 
can be attributed to a real effect in a causal relationship. The recent literature (e.g., 
Pratt & Ainley 2008; Pfannkuch et al. 2012) discusses different concepts of an 
introduction to inductive reasoning, which precedes a formal treatment. They are 
based on the assumption that as early as in the middle grade classes (Biehler 2007; 
Watson 2008), basic concepts of statistical inference can be made accessible when 
students reflect on and evaluate arguments that are based on an analysis of data. The 
implied focus is on considerations of variability in data and an assessment of whether 
different characteristics are due to systematic effects or to random variability. 
Variation is the reason why complex methods of statistical inference were devised. A 
helpful perspective in understanding statistical inference problems is based on the 
signal-noise-metaphor (Konold and Pollatsek 2002). Data are perceived as a 
composite of a signal and noise. The challenge of any data analysis is to search or 
reconstruct the signal from the data corrupted by noise. In a data-drenched world 
statistical literacy—particularly the capacity to identify such signals or messages—is 
essential. Inference can be seen as the conclusion of reasoning from the data to the 
signal.  
Given the importance of understanding and reasoning about statistical inference, and 
the consistent difficulties students have with this type of reasoning, there have been 
attempts to expose students to situations that allow them to use informal methods of 
making statistical inferences (e.g., comparing two groups based on boxplots of sample 
data). Research in this field begins to offer insight into the learners’ inferential 
reasoning and how that thinking might be shaped more effectively by well-designed 
tasks. Rubin, Hammerman, and Konold (2006) define informal inferential reasoning 
as reasoning that involves the related ideas of properties of aggregates (e.g., signal and 
noise, and types of variability), sample size, and control for bias. Pfannkuch (2006) 
defines informal inferential reasoning as the ability to interconnect ideas of 
distribution, sampling, and center, within an empirical reasoning cycle. Rossman 
(2008) has described informal inference as “going beyond the data at hand” and 
“seeking to eliminate or quantify chance as an explanation for the observed data” 
through a reasoned argument that employs no formal method, technique, or 
calculation. 
Combining these perspectives, we follow Zieffler’s et al. (2008) working definition of 
informal inferential reasoning as the way in which students use their informal 
statistical knowledge to make arguments to support inferences about unknown 
populations based on observed samples. Furthermore, Zieffler et al. (2008) propose a 
framework for informal inferential reasoning with the following components: 
• Making judgments, claims, or predictions about populations based on samples, but 

not using formal statistical procedures and methods such as p-value, t-tests; 
• Drawing on, utilizing, and integrating prior knowledge (e.g., formal knowledge 

about foundational concepts, such as distribution or average; informal knowledge 
about inference such as recognition that a sample may be surprising given a 
particular claim; use of statistical language), to the extent that this knowledge is 
available; and 

• Articulating evidence-based arguments for judgments, claims, or predictions about 
populations based on samples 

In addition to these ideas Reading (2007) points out that informal inferential reasoning 
also includes ideas of choosing between competing models, expressing a degree of 
uncertainty in making inference, and making connections between the results and the 
problem context 



3. Change point detection and informal inference 
Change point detection problems can be characterized as follows: Suppose one 
accumulates independent observations from a process that is in a certain state. 
Observations vary around a certain mean. After a while some of the observations seem 
to be a bit unusual, too high or too low. Has something occurred that altered the state 
of the system (a “breakdown”), or are these observations within the range of the 
expected when acknowledging random variation? Should one declare that a change 
took place (“raise an alarm”) as soon as possible? A false alarm costs resources, 
credibility etc., but NOT raising alarm when, for example, in fact a new health hazard 
occurs, may be even more harmful. When we want to detect the change quickly, any 
detection policy gives rise to the possibility of frequent false alarms when there is no 
real change. On the other hand, attempting to avoid false alarms too strenuously leads 
to long delays between the time of occurrence of a real change and its detection.  
Practical examples of this problem arise in areas such as health, quality control and 
environmental monitoring. For instance, consider surveillance for congenital 
malformations in newborn infants. Under normal circumstances, the percentage of 
babies born with a certain type of malformation has a more or less known value p0. 
Should something occur (such as an environmental change, the introduction of a new 
drug to the market, etc.) the percentage may increase (e.g., the thalidomide episode of 
the 1960s). One would want to raise an alarm as quickly as possible after a change 
takes place, while trying to control the risk of a false alarm. Generally, this type of 
problem arises whenever surveillance is being done. 
In most practical situations, the question about a possible change point is a sequential 
decision problem: while the data become sequentially available, a decision has to 
make a trade-off between the risks of false alarm, misdetection and a detection delay. 
The input is usually given “online”, i.e., in piece-by-piece or serial fashion without 
having the entire data available from the start as in contrast to an offline decision 
problem where all the data from the beginning to the end are available and the 
decision regarding a change point is done in retrospect. From a formal mathematical 
and decision-theoretic perspective, extensive research has been done in this field 
during the last few decades to derive optimal decision rules (see e.g., Pollack 1985 or 
Tartakovsky and Moustakides 2010 and the literature therein). 
We consider change point detection tasks as an ideal scenario to investigate learners’ 
IIR. These types of problems have been used previously by Rubin, Hammerman and 
Konold (2006). Engel, Sedlmeier and Woern (2008) investigated responses of 179 
pre-service teachers in a context that required them to determine whether a particular 
change in a process occurred over time or not. One example of these tasks is presented 
in Figure 1. At a first glance, students usually look at the graphical display and may be 
tempted to agree with the reporters’ claim due to the fact that the bar’s height more 
than doubled from 2005 to 2006. But the statistical issue here is an evaluation of the 
increase between 2005 and 2006 in light of the fluctuations of the number of robberies 
over a certain time period. Here – and this may be in contrast to formal procedures of 
classical hypothesis testing – context knowledge about what may cause or prevent 
robberies is also an important ingredient in the decision process.  
Applied to the change point detection problem the signal is the shift in the mean of the 
data distribution while the noise is the variation in the data among a mean that is fixed, 
either before or after the change point. To evaluate the reporters claim in the above 
example it is not enough just to focus on the sudden increase between 2005 and 2006 
but to evaluate that increase in the light of the natural variability of past data. This 
type of problem fits well into above framework for IIR because the task requires (1) 
making judgments and claims on the basis of the sample of observations over 7 years, 
(2) considering variation and the distribution of observed data (integrating prior 
knowledge including the recognition that a sample may be surprising) and (3) 
articulating evidence-based arguments for the claim. Further, the task requires a 
choice between competing models, connects the statistical aspect with the context and  



elicits multiple and partially contradictory arguments and also encourages expressing 
the degree of uncertainty in the decision process. 

 
Fig. 1: Change point detection task “Robberies” to elicit students’ informal inferential 
reasoning 
 
4. A Data Game as a learning environment for Informal Inferential Reasoning  
“Data Games” is an innovative project created in cooperation between KCP 
Technologies in San Francisco, CA and the Scientific Reasoning Research Institute at 
the University of Massachusetts at Amherst. These two teams developed a set of 
web-based games and supporting materials that engage students in developing 
mathematics and data analysis skills. The underlying concept is that students play 
short games that stream data to a surrounding data analysis environment. To be 
successful in the game students have to conceive a strategy that requires analyzing the 
data produced in the process of playing the game. The games are freely available on 
the web1. Erickson (2012) describes the challenges faced in designing and teaching 
with these games. The purpose of the game Epidemic2 is to provide a learning 
environment for informal inferential reasoning in the context of change point detection 
tasks. On each consecutive day of a future month (January 2022), the incidence rate of 
newly diseased people is shown. These counts have some inherent natural variation, 
some days the numbers are below and other days they are above average. At some 
unknown day, the mean shifts to a larger value: This is the day of the outbreak - the 
epidemic. From that day on the actual number of sick people varies around the new 
mean. The challenge in the game is to identify the day of the outbreak of the epidemic 
with as little delay as possible and without raising false alarm (see Figure 2). With 
data arriving sequentially “on-line”, any observed increase in incidence rate may be a 
temptation to raise an alarm. But considerations of variation may calm down the 
excitement and prevent jumping the gun by raising alarm too early. A sound decision 
is always based on a negotiation of random and systematic influences. Full score is 
given for clicking STOP (raising the alarm) right on the day of the outbreak of the 
epidemic; slight penalties are subtracted for each day of delay. Raising a false alarm 
results in a large penalty.  

                                            
1 http://www.kcptech.com/datagames/ resp. http://www.srri.umass.edu/datagames 
2 http://www.eeps.com/changepoint/ 

 

A reporter showed the following graph 
representing the number of robberies over 
the last years and commented: “The graph 
shows that there is a huge increase in the 
number of robberies between the year 
2005 and 2006.” Inquiring about the 
number of robberies over the last seven 
years you obtained the following 
information. Do you agree with the 
reporters’ statement? Why or why not? 

Year 2001 2002 2003 2004 2005 2006 2007 

No of  
Robberies 

528 525 499 523 518 538 533 

 

 



 

 
Fig. 2: Screenshot from day 12 in the data game Epidemic: Can the incidence of 15 
new cases be attributed to random variability or is it an indication of the outbreak of 
an epidemic? 
 
An attractive context that students can relate to (e.g., poisoned fish served at the 
school cafeteria as reason for the disease outbreak) together with some animation are 
important motivators to spend time playing a game. However, from classroom 
experience with other games of the Data Games project (Erickson 2012), it became 
obvious that it is equally important not to overload the context with too many details 
and to keep things as simple as possible. Therefore, in Epidemic we did not consider 
an infectious disease (dependent data) or a change in distribution beyond a simple 
shift in mean. The degree of difficulty in Epidemic depends largely on two variables: 
the magnitude of the shift of the mean (severity of the epidemic) and the noise level, 
expressed as variability of the data and measured in standard deviations. The quotient 
of these two quantities defines a reasonable measure for the signal-to-noise ratio SNR 
which determines the difficulty of the game. The smaller SNR, i.e. the smaller the 
signal relative to the noise, the more difficult it is to detect a change point. The game 
can be played on different levels. 
The lowest level of the game is intended 
to familiarize the user with the 
environment and gaining some first 
experience with playing the game. 
Some users may realize here for the first 
time that not every increase is due to a 
new epidemic. At this level SNR is 
fairly large and there will definitely be 
an outbreak of the epidemic during the 
time period of a month. At the medium 
level the SNR is set lower implying that 
one may easier be tempted to commit a 
type-I error (misjudging a random 
deviation as a systematic change, false 
alarm) or a type-II error (misjudging a 
systematic deviation as a random 
change, failing to detect the epidemic). 
Also, at the medium level there isn’t 
always an epidemic. The highest level 
of the game lets the user freely choose 
the level of difficulty by selecting a 

 

 
 
Fig. 3: At the highest level, Epidemic 
allows the user to choose the difficulty of 
the game by selecting a value for SNR.  



value for SNR. The attainable score will be adjusted accordingly, i.e. a low SNR 
implies the chance of earning more points, but also the risk of higher penalties for 
false alarms (see Figure 3). After getting to know the game at lower levels and having 
gained experience in detecting change points, it is an important design feature to turn 
around and experiment with altering game parameters. Learners are guided. The 
design concept behind freely choosing the SNR level is twofold: it illustrates directly 
the importance of the signal-to-noise ratio for statistical inference and hence illustrates 
the concept of data analysis as search for signals in noisy processes. Furthermore, 
rooted in the psychology of Hans Aebli (1976) this design follows the principle of 
operative concept formation which intends to stimulate thinking in the framework of 
acting and constructing a system of operations that will finally serve the acting and 
concept formation itself.  
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