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Abstract 

 

Carranza & Kuzniak (2008) have analysed the negative impact of reducing probability 
to a purely frequentist notion on the students’ perception of the methods to learn. In 

the controversy between classical and Bayesian statisticians, to avoid a subjectivist 

conception of probability was the last ‘argument’ to help after inconsistencies in clas-

sical statistical inference have shown to be irreparable. However, both schools have 
their relative merits and flaws as seen from the foundational perspective. In the fa-

mous discussion in the American Statistician (1997), Moore finished with the argu-

ment that classical inferential statistics is easier to teach (and understand). Our conclu-
sion conflicts with such views: Knowing the Bayesian way of thinking enhances the 

comprehension of classical methods. The ongoing debate on the difficulties and its 

implications – at secondary level inferential statistics nearly vanished from curricula 
worldwide – seems to undermine Moore’s judgement. We develop the different views 

in parallel – so that students can understand them better. To support this sophisticated 

task we integrate reflections on philosophical issues, use paradoxes, and make exten-

sive use of computers. We build on encouraging feedback from our past courses. 
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1. Introduction 

This paper is based on a two-semester seminar at university (Bayes Statistics I and II, 
presented by the author at Eötvös University Budapest) since 2001; the seminar has 

been repeated yearly with modified content. More details about background and con-

tent of these special courses may be found in Vancsó (2005; 2009; 2010). This paper 
summarizes the main ideas and results. Official curricula in Hungary contain statistics 

since the year 2000. Earlier only elements of probability theory had been taught. T. 

Nemetz investigated ways to introduce inferential statistics intuitively. The main idea 
was forecasting specific events in the context of probability games (see Nemetz, 1989; 

Varga, 1976). The character of the suggested approach towards inferential statistics 

may be seen from Vancsó (2005):  

“The key idea of our approach towards probability and statistics is that the two differ-
ent ways of inferential statistics should be taught together at school-level, which also 

has a deep impact on the way how to teach the probability part [see also an analysis of 

conditional probability in Borovcnik & Kapadia, 2013]. There was an interesting and 
intense debate about classical and Bayesian ways of inference in teaching statistics at 

university in the teachers’ corner of the American Statistician in 1997.”  

The discussion was led by Berry (1997), Albert (1997), Moore (1997), and Witmer et 
al. (1997). There were three different positions in this debate.  

- The Classical group represented by Moore (1997) argued for the classical way 

and considered the Bayesian approach as too difficult for teaching.  

- The Bayesian group led by D. Lindley who is convinced that – at universities – 
predominantly the Bayesian approach should be taught.  

- The third and smallest group (that did not join the ASA discussion but formed its 

ideas at the same time) advocates an integrated way of teaching both approaches 
parallel to each other; see Migon & Gamermann (1999).  
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After a long time of experimenting, reading, and thinking, we decided to follow this 

third way in Hungary. The background of our long-term project is elaborated in 

Vancsó (2009):  

“Our view was also deeply influenced by the collaboration with D. Wickmann and M. 
Borovcnik in the working group ‘Stochastik in der Schule’ [...] (Borovcnik, Engel, & 

Wickmann, 2001). Wickmann (1998) discussed both the philosophical and epistemo-

logical background of the confrontation between the first two groups. He argues that 
classical statistics introduced in the usual way is the wrong approach, because the fre-

quentist interpretation of statistical results is generally false and in some cases is not at 

all appropriate (Wickmann 1998, pp. 57–60).  
The Bayesian point of view ‘attacks’ the classical inferential approach because therein 

probability is reduced to solely an objective ‘chance machine’ interpretation: probabil-

ity may only be interpreted by relative frequencies in independently repeated identical 

random experiments. In the more general cases of a unique situation, probability may 
not be used in classical theory, according to the Bayesian critique. Taking this argu-

ment seriously, any application of probability to a situation perceived as unique (not 

repeatable) would be ‘forbidden’. [...] For teaching, this has unfortunate conse-
quences: either to fudge such situations, or to exclude them. Neither is a good situation 

when one wants students to understand the concepts they apply. The [following sec-

tion] illustrates why we have gradually become supporters of the third way.” 
 

2. Philosophy of mathematics as a background in statistics teaching 

To clarify the status of mathematical concepts, it is helpful to take a philosophical 

perspective. Today, it causes no problem to acknowledge that there are different ge-
ometries depending on different systems of axioms; the only question might be in 

which situation they can be used if we want to describe a real situation. However, that 

is a question about modelling the situation or about the application of the theory and 
not about the theory itself. It is well-known that all different geometries are relatively 

consistent from a modern axiomatic viewpoint. We sometimes forget about the de-

velopment of modern mathematics and return to the Greek basis and believe in our 

theorems as absolutely true statements. This step backwards might be one reason for 
the intense debate between classical and Bayesian statisticians; at times, the scientific 

dispute has adopted the character of a religious war.  

The conflict in statistics seems to be quite comparable to the geometry debate of the 
19th century. It is a false dichotomy to take either classical or Bayesian statistics. Both 

of them are sustained by consistent theories; the choice between these ‘schools’ comes 

up only in the case of application. It is very important to know about the mathematical 
theories in the background because it grants legitimacy not only to an objectivist in-

terpretation of probability but also to the so-called “subjective probability”; the latter 

concept, too, is embedded within a consistent theory. Without such a theoretical justi-

fication, the Bayesian approach would not have any ground and could be dismissed as 
an interesting but non-scientific way of thinking. To address the different interpreta-

tions of probability is an old problem. Carranza & Kuzniak (2008) analyse the impact 

of focussing the theory completely on an objectivist concept of probability while the 
examples require a subjectivist concept to solve the posed problems; the tension be-

tween these extreme poles causes a great confusion on the part of the learners. This is 

a main reason why we decided for developing both concepts in parallel. 
 

3. Seminars following the third way 

The content and structure of the seminars was influenced strongly by our Hungarian 

roots which comprise an approach towards teaching concepts by paradoxes, which 
may be well seen from Székely (1986). T. Varga (1976) also used paradoxes with 

primary school pupils like “the long run” paradox, which seems to be in conflict with 

the tendency for searching for patterns in the emergence of random sequences after 10 
heads in coin tossing, tail seems to be “more probable” for many. 



This way of teaching can be seen clearly in the case of the favourable relation which 

plays a central role of the conception of the first seminar. This seminar deals with the 

probabilistic foundation and addresses the intuitive background of the Bayesian way 

of thinking including the favourable relation and its connections to the logical impli-
cation. In order to argue how a different logic is used in stochastic thinking contrasted 

to classical logic we briefly analyse a special relation between events, named “fa-

vourable relation”, which was introduced by Chung (1942) and used by Falk and 
Bar-Hillel (1983) in order to enhance some probabilistic and statistical paradoxes.  

 

Case Sign Description 

)()|()1( BPABP   BA  A favours B or A influences B positively. 

)()|()2( BPABP   BA  Events A and B are stochastically independent. 

)()|()3( BPABP   BA  A does not favour B or A influences B negatively. 

 
This relation can be considered as a weakened form of implication (Vancsó, 2009): 

- Probabilistically taken, A implies B logically means if you presume (or imagine) 

that A has happened, then the probability that B will happen is 1 (true).  
- Connected to this is the so-called favourable relation: A favours B does not mean 

that B is true if A is supposed to happen; but B will become more probable if A 

has occurred compared to the case when A has not occurred.  

Some features discriminate the favourable relation from logic implication, e.g.:  

- Symmetry and asymmetry: ABBA    then BA ; as not all statements are 

equivalent, implication is not symmetric. For two non-equivalent events, it 

holds ))( ( ABBA   , i. e., the logical implication is asymmetric. 

- Transitivity: BA  and CB   then CA , hence implication is transitive.  

Such relations are deeply imprinted in our mind from early childhood and reinforced 

by teaching. It seems ‘paradoxical’ that the favourable relation violates them: 

- It holds BA  then AB  ; the symmetry is true for all three versions of in-

fluence; i. e., the favourable relation is symmetric.  

- For the transitivity, there is no general rule; sometimes it is true that BA  and 

CB   implies CA  but sometimes this does not hold.  

Advantages of the favourable relation are: (i) Students become familiar with condi-

tional probabilities and their counterintuitive features; (ii) it allows an intuitive check 

of calculations; (iii) a lot of paradoxes may be clarified by using special properties of 
this relation, which differentiate it from the classical implication, see Vancsó (2009). 

Other rules of implication were compared to the favourable relation in Borovcnik 

(1992).  

 

Ex.: If BA  and CA  then it holds 

)( CBA  . The favourable relation 

violates such a rule; three different cases 

are represented in Figure 1, in case i. 

CBA   has 4 points, in ii. 3, in iii. 2. 

 

Figure 1. 
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We were analysing typical situations where mistakes are caused by a wide-spread na-

ive way of thinking; see the many fallacies in statistics such as Linda’s fallacy (Tver-

sky & Kahneman, 1973), or Simpson’s paradox (Malinas & Bigelow, 2004; Morrell, 

1999), or the Monty Hall dilemma (see the appendix of Vancsó, 2009). In teaching in 
class, the students were working in small groups on such puzzles or paradoxes trying 

to understand what happens and why it is contradictory to their expectation. Or, a 

story was introduced about Monty Hall and they may think about it with the aim to 
present their proposed solution of the problem. See Vancsó (2010) for further exam-

ples and more detailed analyses of comparing these relations.  

 

4. Deliberate discussion on objective and subjective interpretations of probability 

The different interpretations of the notion of probability are another topic on the 

agenda of the course; we analyse them using historical facts and texts as well. We 

clearly differentiate between the so-called ‘objective’ probability notion and the sub-
jectivist view on probability. 

- The objective term of probability can be used only in situations where a real 

‘machine’ of chance exists, more abstractly formulated, a probability experiment 
exists, which can be repeated under the same circumstances; in those cases the 

relative frequencies show a special kind of stabilization.  

- On the contrary, the ‘subjective’ probability notion is connected to our current 
level of knowledge about aspects not only in probability situations and may 

therefore be applied to a broader spectrum of problems. 

For example, if we say ‘the chance of failing this test is 60%’ this is a subjective 

probability because there is no chance related to repeated experiments to get the rela-
tive frequencies. It is a unique case as tomorrow we will write a test. Based on infor-

mation about the difficulty level of the test and our preparation efforts, we try to esti-

mate the chances to pass or fail.  
The course in the first semester has its own goals as well but it is an important prereq-

uisite for the second course on inferential statistics where different probability notions 

and conditional probability and related rules are used e. g. by Bayes’ theorem, which 

is discussed both for discrete and continuous distributions.  
 

5. Classical and Bayesian methods of the Bayes II course in parallel  
In the second semester, real problems are introduced which can be suitably analysed 
from both points of view. In that part we use, amongst others, the course elaborated by 

Wickmann (1991) but instead of criticizing the classical method we are building up 

both constructions and solving problems using the classical and the Bayesian method 
in parallel. At the end we discuss the different solutions and their interpretations.  

In this part of the course, mathematical techniques gain momentum. The numerical 

solution of a problem sometimes takes several weeks using the two methods together, 

which occasionally requires totally different mathematical tools for each of the ap-
proaches. It should be noted that we use mathematical methods first in a simpler em-

bedding and only later turn to computers for the calculations in more complicated 

examples. It is worth the effort we invest in the conceptual analysis because the stu-
dents recognize several connections between stochastics and other topics of mathe-

matics. This might reduce the outstanding role of stochastics within mathematics and 

strengthen the self-confidence of students in teaching probability and statistics later.  
In the classical approach, parameters are simply constants, which are unknown. For 

the Bayesian approach, these parameters have to have a prior distribution as they are 

unknown. With the help of Bayes’ theorem, this prior distribution is updated when 

data become known from a random sample. While the process of applying the theorem 
involves technicalities – only in a few examples the mathematics turns out to be quite 

easy. Thus, these technicalities have to be countered by suitable software. VisualBayes 

is an easy tool for this purpose (Wickmann, 2006); it can be used not only on PCs but 
on graphical calculators as well, as it is based on the computer algebra system Derive.  



Regarding the usage of the methods from the two schools, the following ‘rule of 

thumb’ might help for orientation, which method to prefer:  

- If we have a unique situation we should use the Bayesian approach; in this case 

we have to express our special information or pre-knowledge about the parame-
ters by a suitable prior distribution.  

- In the so-called production line (moving-band) situation we tend to use the clas-

sical methods following the ideas of Fisher or the work of Neyman and Pearson.  
- In the pure classical approach we are not allowed to use our pre-knowledge for 

the process of modelling. Information always has to be “objective”, which means 

it has to be independent from the person who models the problem. Information – 
at least potentially – has to be open for scrutiny by a repeated experiment from 

which one could check the assumed probabilities or probability distributions by 

the relative frequencies of the performed experiment. However, there is often no 

such experiment for the parameters of a distribution, which is chosen to model a 
variable, which is to be investigated. 

 

6. Conclusions  
The seminars have been evaluated continuously by written essays and interviews after 

its completion. The students appreciate this way of learning as very useful and they 

expect to be able to deal with the subtleties of the concepts successfully in their future 
career as teachers. Two citations from the many interviews may illustrate the impact 

of the approach:  

“I understood the method of confidence intervals first after I had become more famil-

iar with the Bayesian region of highest density [RHD].” and “I really like the Bayesian 
method because I saw for the first time why the people have different opinions in 

many cases. Because of the partners have different prior distributions.”  

These opinions express an essential advantage of the parallel approach. For more de-
tailed feedback see Vancsó (2009). Finally we summarize the approach presented here 

and its potential to ‘dissolve’ the educational conflicts related to inferential statistics: 

- Instead of teaching either a classical or (exclusively) a subjectivist approach to 

inferential statistics, one could follow the options of a blended approach or a 
parallel approach. The disadvantages of purely objectivist curricula have been 

dramatically shown by Carranza and Kuzniak (2008). A purely subjectivist ap-

proach might have similar drawbacks. A blending of the concepts from the dif-
ferent schools seems hopeless because of the irreconcilable character of the 

statements of the different schools from a philosophical point of view. To let the 

approaches stand as they are but to teach them in parallel and to learn about their 
character as well as their relative merits might be the more promising variant to 

solve the controversy in the foundations of inferential statistics for teaching. 

- The reactions of students and the results of the experiments show that this ap-

proach is suitable to be worked out in a more detailed form. The next step will be 
a well-prepared teaching experiment with an accompanied statistical analysis of 

both the consequences on the beliefs of prospective teachers and the improve-

ment in understanding the concepts of statistical inference and the stability in 
solving related problems.  
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