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Abstract

A scoring rule is a principled way of assessing a probabilistic forecast. The key requirement of a
scoring rule is that it rewards honest statements of ones beliefs. A scoring rule is said to be local if it
assigns a score based on the observed outcome and on outcomes that are in some sense “close” to the
observed outcome. In practice, almost all scoring rules can be derived from a concave entropy func-
tional. The property of locality then follows when the entropy is 1-homogeneous (up to an additive
constant). Consequently, except for the log score, a local scoring rule has the remarkable property that
it is 0-homogeneous; in other words, it assigns a score that is independent of the normalization of the
quoted probability distribution. In many statistical applications, it is not plausible to treat observed
outcomes as independent, e.g. time series data or multicomponent measurements. By using an appro-
priate entropy, we show that local scoring rules can be easily extended to multidimensional outcome
spaces. Furthermore, we are able construct local scoring rules that are extensive, i.e. the score of
independent outcomes is a sum of independent scores. Previously, only the log score was known to
have this property. We end with an application of multidimensional local scoring rules to sequential
data.
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1. Introduction

A scoring rule S(x,Q) is the loss on observing x having quoted the probability distribution Q
for the random variable X . We have S : (X ,P)→ R = [−∞,∞], where X is the outcome
space and P is a set of probability distributions on X . The defining properties of a proper
scoring rule pertain to its expectation. Letting S(P,Q) ≡ EX∼P[S(X ,Q)], where P ∈P, we
require that (i) S(P,Q) is affine in P and (ii) S(P,Q) ≥ S(P,P) for all P,Q ∈P. The first
condition means we can take P to be convex; the second condition means ones expected
score is minimized by quoting ones true belief. If S(P,Q) > S(P,P) for Q 6= P, we say the
scoring rule is strictly proper. A classical example of a scoring rule is the log score: S(x,Q) =
− lnq(x), where q(x) may be a probability density or mass function. Strict propriety is then
equivalent to the statement that the Kullback-Leibler divergence is positive for Q 6= P.

A unique feature of the log score is that it depends on the quoted distribution only at
the observed point x. Local scoring rules are scoring rules that come close to obtaining
this property: they depend on the quoted distribution only in a neighbourhood of the point
x. When X is continuous, the neighbourhood is infinitesimal and the scoring rule depends
on the derivatives of the probability density. The order of a scoring rule is the order of the
highest derivative of q(x). In the case when X is an interval of the real line, Parry et al. (2012)
characterized the form of such local scoring rules and showed that only even order scoring
rules are possible. Remarkably, the local scoring rules they found were also independent of
the normalization of the quoted probability density. As an example, the simplest second order
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scoring rule is

S(x,Q) = q′′(x)
q(x) −

1
2

(
q′(x)
q(x)

)2
, (1)

and was independently discovered by Almeida and Gidas (1993) and Hyvärinen (2005). Gen-
eral second order scoring rules were fully developed in Ehm and Gneiting (2012).

When X is discrete, a neighbourhood structure is defined via a graph on the outcome
space: the edge xy indicates S(x,Q) depends on q(y). The resulting scoring rules are also
termed local and were characterized in Dawid et al. (2012), who showed that the graph is
undirected. Furthermore, like their continuous counterparts, such local scoring rules are in-
dependent of the normalization of the quoted probability distribution. As an example, essen-
tially pointed out by Hyvärinen (2007), the negative logarithm of Besag’s pseudolikelihood
is a local scoring rule. Unfortunately, space constraints do not allow us to give a parallel de-
velopment of local scoring rules on discrete outcome spaces, but it is worth noting that most
of what follows can be extended, with appropriate modification, to the discrete outcome case.

From now on, we let X be a simply connected subset of Rn and let q(x) be a strictly
positive density with respect to the Lebesgue measure. For simplicity, we will only consider
local scoring rules of second order so that q(x) is assumed to be twice differentiable.

2. Entropy and multidimensional scoring rules

Each proper scoring rule defines a concave entropy H(P) := S(P,P). Gneiting and Raftery
(2007) showed that the converse almost holds (see also McCarthy (1956), Hendrickson and
Buehler (1971)): if H(P) is strictly) concave and H?(·,P) : X → R is a subgradient to H at
P ∈P then

S(x,Q) = H(Q)+H?(x,Q)−H?(Q,Q) (2)

is a (strictly) proper scoring rule. In practice, H?(·,Q) is often a gradient and then H(Q)
defines a unique scoring rule. In this construction, locality is seen to be the statement that
H(Q) = H?(Q,Q), up to an additive constant.

In the case n = 1, Parry et al. (2012) and Ehm and Gneiting (2012) considered entropies
of the form

H(Q) =
∫

dx φ(x,q(x),q′(x)), (3)

where φ(x,y,y1) is differentiable in x and, for almost all x∈X , is twice differentiable, jointly
concave and 1-homogeneous in (y,y1). For example, eq. (1) is obtained with the choice
φ(x,y,y1) =−1

2
y2

1
y . It is the condition of 1-homogeneity that ensures H(Q) = H?(Q,Q) and,

consequently, S(x,Q) is 0-homogeneous. In fact, the form of the gradient H?(·,Q) depends
crucially on assuming the boundary terms that arise in integration by parts are zero; this puts
important constraints on P (see Ehm and Gneiting (2012)). We omit fuller discussion of this
point here.

The advantage of the entropy construction is that it suggests obvious generalizations,
first to the multidimensional case, i.e. n > 1, and second to the multidimensional local scor-
ing rules found by Almeida and Gidas (1993), Hyvärinen (2005), and Dawid and Lauritzen
(2005). We denote the components of x ∈ X as xi, where i = 1, . . . ,n, and write qi for
∂q/∂xi. We also let Di denote the total derivative with respect to xi. It follows from eq. (2)
that if φ [y] := φ(x1, . . . ,xn,y,y1, . . .yn) is differentiable in x, and twice differentiable, jointly



(strictly) concave and 1-homogeneous in (y, y1, . . . ,yn) then, with a slight abuse of notation,

S(x,Q) =

(
−Di

∂

∂qi
+

∂

∂q

)
φ [q] (4)

is a (strictly) proper local scoring rule of second order. Note that we use the Einstein summa-
tion convention, i.e. a sum is implied over repeated indices.

The following example includes all existing multidimensional scoring rules as special
cases. Let Gi j(x) be (the components of) a positive definite symmetric matrix and let Gi j be
its inverse. Then φ [q] =−1

2 q−1Gi jqiq j generates the proper scoring rule

S(x,Q) = Gi j
(

qi j

q
− 1

2
qiq j

q2

)
+Gi j

,i
q j

q
, (5)

where qi j = ∂ 2q/∂xi∂x j and Gi j
,i = ∂Gi j/∂xi. When, additionally, X has a metric structure,

the above scoring rule affords a covariant formulation. If gi j(x) is the metric tensor on X
then q(x) = g−1/2q(x) is the probability density with respect to the measure g1/2dx, where
g := det[gi j]. Setting Gi j = gi j, gives the scoring rule of Dawid and Lauritzen (2005) (up to
an irrelevant additive constant):

S(x,Q) = gi j
(

∇i∇ jq
q
− 1

2
∇iq∇ jq

q2

)
, (6)

where ∇i is the covariant derivative with respect to the Levi-Civita connection.

3. Extensive scoring rules

At an intuitive level, extensivity of a scoring rule means that independent data can be taken
individually or all together yet yield the same score. The idea of extensivity is not new but to
the best of our knowledge has not been formalized before now. To avoid trivial subcases, we
will assume n > 1 from now on.

Let Q ∈P be a joint distribution on X and let Mi be the operation of marginalizing
over all variables except xi. In other words, Qi := MiQ is the marginal distribution for X i. It
follows that Pi := MiP is a set of distributions on Xi := {xi |x ∈X } and that Pi inherits
convexity from P. We now define the operator I by

I Q =
n

∏
i=1

MiQ =
n

∏
i=1

Qi, (7)

i.e. I Q is a distribution that treats the (X i) as independent. It is straightforward to show
I 2 = I , hence I is a projection operator. We call the range of I the centre of P and
denote it C = I P ⊆P1 · · ·Pn. We say P is centred if C ⊂P. Note that C is not convex
and so C 6=P. Further, we call R(C)= {Q∈P|I Q=C} the ray at C∈C . More generally,
we can identify a ray by any distribution it “passes through”; we define R(Q)≡R(I Q).

We are now in a position to define extensivity. Let P be a convex and centred set of
distributions on X . We say a scoring rule S(x,Q) is extensive on (X ,P) if it is strictly
proper and if for all Q ∈ C ,

S(x,Q) =
n

∑
i=1

Si(xi,Qi), (8)



where Si(xi,Qi) are strictly proper scoring rules on (Xi,Pi). It follows that, for Q ∈ C ,
S(P,Q) = ∑

n
i=1 Si(Pi,Qi). Note that the requirement of strict propriety means eq. (8) cannot

be lifted to Q ∈P, for we would have S(P,Q) = S(P,P) for all Q ∈R(P). Therefore, eq. (8)
represents a simplification of S(x,Q) only in the case where Q ∈ C . It is worth pointing out
that eq. (8) is often used when Q ∈P and is referred to as the observed or empirical score,
but it is perhaps not widely appreciated that such a definition sacrifices strict propriety.

We define the sequential class of extensive scoring rules as follows. Writing the joint
probability density as a product of nested conditional densities (the ordering of outcomes is
arbitrary), we have

q(x) = q(xn|x1:n−1)q(xn−1|x1:n−2) · · ·q(x2|x1)q(x1),

where we have introduced the shorthand notation x1: j = (x1, . . . ,x j). Then the following
scoring rule is extensive:

S(x,Q) =
n

∑
i=1

Si(xi,Qi|1:i−1), (9)

where Si(xi,Qi|1:i−1) are strictly scoring rules on (Xi,Pi). Proof: When Q ∈ C , this reduces
to eq. (8) since then Qi|1:i−1 = Qi, and strict propriety follows from the fact that

S(P,Q) =
n

∑
i=1

EX1:i−1∼P1:i−1Si(Pi|1:i−1,Qi|1:i−1). (10)

The logarithmic scoring rule is a member of this class since lnq(x) = ∑
n
i=1 lnq(xi|x1:i−1).

Indeed it is easy to see that the log score is essentially the only extensive score in the class of
separable Bregman scores. Separable Bregman scores are of the form

S(x,Q) = ψ
′(q(x))+

∫
dy
{

ψ(q(y))−q(y)ψ ′(q(y))
}
,

and are (strictly) proper when ψ(s) is a (strictly) concave function of s ≥ 0. (Note that eq.
(2) holds with H(Q) =

∫
dxψ(q(x)).) The well-known Brier score is given by ψ(s) =−1

2 s2,
for example. For extensivity, we require ψ ′(s1 . . .sn) = f (s1)+ · · ·+ f (sn), for some function
f . Treating this as a functional equation, we see this implies ψ ′(s) = f (s)+(n−1) f (1). But
then the original expression becomes f (s1 . . .sn)− f (1)= [ f (s1)− f (1)]+ · · ·+[ f (sn)− f (1)]
and the only solution to this is f (s)− f (1) = lns, up to irrelevant additive and multiplicative
constants.

We now introduce the local class of extensive scoring rules, indeed the form of the local
scoring rule eq. (4) is already reminiscent of an extensive scoring rule. Specifically, if

φ [y] =
n

∑
i=1

φi(xi,y,yi), (11)

where for all i, φi(xi,y,yi) is differentiable in xi and twice differentiable, jointly strictly con-
cave and 1-homogeneous in (y,yi), then

S(x,Q) =
n

∑
i=1

(
−Di

∂

∂qi
+

∂

∂q

)
φi(xi,q,qi) (12)

is an extensive scoring rule. Proof: When Q ∈ C , φi(xi,q,qi) = q(x−i)φi(xi,q(xi),q′(xi)),
where x−i := (x j | j 6= i), so that

∂

∂q
φi(xi,q,qi) :=

∂

∂y
φi(xi,y,yi)

∣∣∣∣
y=q,yi=qi

=
∂

∂y
φi(xi,y,yi)

∣∣∣∣
y=q(xi),yi=q′(xi)



and similarly with (∂/∂qi)φi(xi,q,qi). Consequently, S(x,Q) becomes a sum of strictly
proper one-dimensional scoring rules, as required.

4. Application

Consider a homogeneous discrete time Markov process on the real line, observed at times
1 : n. If we model the transition probability as

q(x|y) = exp(θ f (x−ρy))
Z(θ)

(13)

then the normalization Z(θ) is typically not computable. Nevertheless, local scoring rules
enable inference in such cases. Conditional on x1, the probability of the observations is

q(x2:n|x1) = q(xn|xn−1)q(xn−1|xn−2) · · ·q(x2|x1) =
n

∏
i=2

exp(θ f (xi−ρxi−1))

Z(θ)
. (14)

Choosing the simplest extensive local scoring rule, namely that generated by φi(xi,y,yi) =

−1
2

y2
i
y , we obtain the score

S(x,Q) = θ(1+ρ
2)

n

∑
i=2

f ′′(xi−ρxi−1)+

1
2 θ

2

{
(1+ρ

2)
n

∑
i=2

f ′(xi−ρxi−1)2−2ρ

n−1

∑
i=2

f ′(xi−ρxi−1) f ′(xi+1−ρxi)

}
. (15)

Then the estimating equation (∂/∂θ)S(x,Q) = 0 is unbiased and leads to a consistent and
very simple estimator for θ (see Dawid and Lauritzen (2005), for example). Note that when
ρ = 0, the states of the Markov chain are independent and the scoring rule reduces to a sum of
independent scores, as expected. In the case of Gaussian diffusion, i.e. f (x) = −1

2(x− µ)2,
θ is the precision parameter and Z(θ) can be computed. The resulting estimator for θ is

θ̂ =

(
1

n−1

{
n

∑
i=2

(xi−ρxi−1−µ)2− 2ρ

1+ρ2

n−1

∑
i=2

(xi−ρxi−1−µ)(xi+1−ρxi−µ)

})−1

, (16)

which differs from the maximum likelihood estimator when ρ 6= 0 due to the presence of
the second sum. This illustrates that tractability of the estimator is achieved at the cost of
efficiency.
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