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Abstract

The increasing production of renewable energy, and in particular wind energy, intro-
duces highly volatile sources of energy in the total production. This implies that methods
for reliable probabilistic forecasts of future wind power production are essential.

Today there exist numerous methods and tools for providing point forecasts of wind
power generation. However, for efficient and safe regulation, and for harvesting optimal
trading strategies reliable information on the uncertainty is also needed. In this paper
we focus on forecasts on the 1-48 hour horizon. It is well-known that the form of the
conditional density for the wind power production is highlydependent on the level of
predicted wind power in addition to the prediction horizon.This paper describes a new
approach for wind power forecasting based on state dependent stochastic differential
equations (SDEs). Specifically we will use a logistic type stochastic differential equa-
tion to account for the natural restrictions (wind power cannot exceed installed capacity
and cannot be below zero). The SDE is driven by a widely used point predictor for wind
power forecast, and the SDE formulation allows us to calculate both state dependent
conditional uncertainties as well as correlation structures. Evaluation and optimization
of the model is obtained by evaluating the likelihood of a 48-dimensional random vec-
tor when accounting for the correlation structure defined bythe SDE-formulation. We
explore the correlation parameters and skewness of the model and input-variables (pre-
diction horizon and point predictions), by a non-parametric (spline based) model for the
parameters.

Keywords: nonlinear forecasting, state space model, stochastic differential equations,
wind power prediction.

1 Introduction

In 2012 wind power accounted for about 30 % of the total demand for electricity in Den-
mark. Integrating this world leading amount of wind power into the power systems calls for
state-of-the-art methods for wind power forecasting. Methods for generating point forecasts
(e.g. Giebel et.al., 2011) of wind power for operational decision-making have been used since
1995. Today, however, decision-making and operational optimization problems can be char-
acterized by assymmetric and time-varying cost functions. This implies that state-of-the-art
tools must be able to provide a reliable description of full predictive densities, with lead times
ranging from minutes to days.

Still, even after about 20 years of research, wind power forecasting remains a challenge
from a statistical point of view. This is firstly due to the nonlinear and double-bounded nature
of the stochastic process describing the variation in time of wind power production (Pinson,
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2012; Trombe, 2012). In a probabilistic framework, conditional predictive densities may be
generated in a parametric framework (e.g. Pinson, 2012; Trombe, 2012), or alternatively in
a nonparametric framework (e.g. Møller, 2008; Nielsen, 2006). Trajectories of wind power
generation may be based on Gaussian copula (Pinson, 2009) or by nonlinear transformation
of ensemble forecasts (Nielsen, 2004) of relevant meteorological variables.

In this paper a new method based on stochastic differential equations (SDEs) is suggested.
The advantage of this method is that by selecting a proper specification and parameterization
of the SDE, basically all the required properties, like nonlinearities, doublebounded varia-
tions, and varying quantiles, can be described. The multivariate distributionof wind power
data will (after normalised with installed capacity) be contained in[0,1]n, wheren is the
dimension of the forecast (in this paper we condidern= 48).

The scope is to demonstrate the improvements that can be achieved by considering SDE’s,
and we assume that the general distribution can be approximated by a multivariate normal
distribution, describing the variations of prediction erreros around pointpredictions by the
widely used Wind Power Prediction Tool (WPPT, see (Madsen, 1998; WPPT, 2012)).

2 Data

The data studied here consist of hourly averages of wind-power production from Klim wind
power plant located in the northern part of Denmark. Production data arenormalised with
the installed capacity (21MW). Every 6th hour a new forecast based on a48 hour weather
forecast is issued, one observation in our setting consist of a 48 hour forecast and the corre-
sponding measurements.The data set cover the period March 2001 through April 2003 (2593
observations). The SDE estimation is quite time consuming and it was therefore decided to
base the estimation on 150 observations (chosen to span the situations in data)only. The
observations not in the training set is used as our test set.

3 SDE-models

The continuous-discrete time stochastic state space model consist of a SDE describing the
dynamics, and an observation equation. We want the deterministic part of themodel to
have the stationary solutionxi,t = p̂i,t (with p̂i,t being the WPPT forecast). The diffusion is
allowed to depend on the state and the input, and since we want the diffusion todie off at
the boundaries a minimal requirement isσ(1, p̂i,t , t) = σ(0, p̂i,t , t) = 0. Which is fulfilled for
logistic type SDEs (e.g. Schurz, 2007). Here we select the special case

dxi,t =−θi,t · (xi,t − p̂i,t)dt+
√

2θi,tai,t p̂i,t(1− p̂i,t)xi,t · (1−xi,t)dwt . (1)

For each fixed value ofθi,t and p̂i,t this have a stationary solution forai,t ∈ [0,1) (see e.g.
Forman and Sørensen, 2008). We want to transform (1) in such a way that the transformed
system is independent of the state. In order to do this we use the Lamperti transformation
(e.g. Baadsgaard et. al., 1997; Iacus, 2008),zi,t = arcsin(2xi,t −1), with zi,t ∈

[

−π
2 ,

π
2

]

. The
first main result of the paper is summarised in the following theorem.

Theorem 1 The Lamperti transformed process corresponding to(1), is given by

dzi,t = f̃ (zi,t , p̂i,t , t)dt+
√

2·θi,tai,t p̂i,t(1− p̂i,t)dwt . (2)



with

f̃ (zi,t , p̂i,t , t) =
2
(

−θi,t · (
1
2(1+sin(zi,t))− p̂i,t)+

1
2 sin(zi,t) ·ai,t ·θi,t p̂i,t(1− p̂i,t)

)

cos(zi,t)
. (3)

Moreover the second order moment representation of the linearised process can be solved for
ai,t ∈ [0,2).

PROOF. Omitted

The restriction ona is therefore relaxed and we consider the SDE-formulation

dxt,i =−θ · (xt,i − p̂t|0,i)dt+2
√

θα p̂t|0,i(1− p̂t|0,i)xt,i · (1−xt,i)dwt,i (4)

with α ∈ [0,1). The “bias” of the Lamperti-transformed SDE (α p̂t|0(1− p̂t|0)(1−2xt)) points
in the “wrong” direction, and a compensator is therefore introduced

dxt,i =−θ · (xt,i − p̂t|0,i −cp̂t|0,i(1− p̂t|0,i)(1−2xt,i))dt+

2
√

θα p̂t|0,i(1− p̂t|0,i)xt,i · (1−xt,i)dwt,i (5)

wherec≥ 0 is a constant. Again the results are are given in a theorem.

Theorem 2 The second order moment representation of the linearised Lamperti transformed
process corresponding to(5) exist forα ∈ [0,1) and c≥ 0.

The complete solution (second order moment representation of the Lamperti transformed
process) is given by (for given z0|0)

ẑt =arcsin

{(

∫ t

0
θ(2p̂s|0−1)e

∫ s
0 gududs+sin(z0|0)

)

e−
∫ t

0 gsds
}

(6)

where gt = θt [1−2(1−ct)αt p̂t|0 · (1− p̂t|0)] and the covariance is given by (with P0 = 0)

Pt =
∫ t

0
σ2

s e−2
∫ s

0 Aududs·e2
∫ t

0 Asds; with At =
∂ fz(z)

∂z

∣

∣

∣

∣

∣

z=ẑt

(7)

PROOF. Omitted
In addition to the theorem above we useρt,t+s = e

∫ t+s
t Audu to approximate the correlation

structure. These equation are solved by numerical integration to obtain the meanẑi ∈R
48and

a covariance matrixPi ∈ R
48×48 for the i’th observation.

For all of the models the observation variance is constant (different foreach model). The
parametersα , θ andc are modelled by

γ(p̂t|0, t) =
Kγ

1+exp(−γ0− fγ(p̂t|0)−gγ(t))
, (8)

with γ = α ,θ or c where the functions infγ andgγ are modelled by natural cubic splines.Kγ
is used to control the rangeγ (we useKα = 1 andKθ = Kc = 20).

We further assume that the observations are given by

pi =x̂i +ei = h(ẑi)+ei , (9)
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Figure 1: Standard deviation (top row) and bias (bottom row) as a functionof p̂t|0 and look
ahead time (for ˆpt|0 in time) for SDE models 0, 1, and 5.

wherexi is found by the integration described in the above andei ∼ N(0,Σe). Using the error
propagation law and assuming thatpi is Gaussian we get

pi ∼ N

(

1
2
(1+sin(ẑi)),CiPiCi +Σe

i

)

, (10)

whereCi =
∂h(ẑi)

∂ ẑi
= 1

2diag(cos(ẑi)). The covariance function ofei is modelled bycov(et1,i ,et2,i)=

s2ρ(et1,i ,et2,i), wheres2 is a constant to be estimated andρ(et1,i ,et2,i) is determined from the
correlation of the covariance matrixCiPiCi .

4 Results

The models are found by including more and more structure in the parameters starting from
the simple model as indicated in Table 1 (only a selection of the tested models are shown).
In each step all possible inclusions are tested and the best model in terms of the likelihood is
chosen. The simplest model (SDE 0) contain only a constant observation variance (s), a time
constant (θ ), and a diffusion parameter (α). Further inclusion of time varying parameters
(either directly on time or by including function ofpt|0) gives large significant improvements
in all steps (Table 1).

SDE-models 0 and 1 are both time-homogeneous, the standard deviation growvery fast in
the first part of the series and find a stationary level after a few hours (Figure 1, top row), the
effect of the compensator (c) is clear from Figure 1 (bottom row) where the bias is reversed,
and the complicated structure introduced by time-varying parameter is illustratedby SDE-
model 5.



Table 1: Value of the log-likelihood function for the training set and the test set.
df α θ c l(train) p-value l(test)

SDE 0 3 0.307 0.206 0 8408.4 161598
SDE 1 4 0.472 0.129 2.879 8532.4< 0.0001 165011
SDE 5 24 fα fθ +gθ gc 8728.9 < 0.0001 166296
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Figure 2: Stationary pdf for look ahead time (t) equal 12 hours for different predicted values
of power (left column), and for predicted power ( ˆpt|0) equal 0.4 and different look ahead
times (right column).

Even though the presented SDE’s are always in the transient, it is illustrative to look at the
stationary distribution. If the (time-varying) parameters are fixed the stationary distribution of

the underlying SDE is a Beta distribution with parameters
1+ct ·(1−p̂t|0)

2αt ·(1−p̂t|0)
and

1+ct ·p̂t|0

2αt ·p̂t|0
(see Figure

2). The figure clearly illustrates the skewness obtained by the state dependent formulation of
the diffusion.

5 Conclusion and Discussion

The starting point of the modelling is a quite simple SDE driven by a state of the artfore-
casting algorithm for prediction of the mean value of wind power. By considering natural
restriction on the diffusion process we were able to formulate a set of ODEsto govern the
second order moment representation of the wind power. The consideredSDE models perform
far better than complex benchmark models with larger number of parameter (not discussed
here).

The SDE’s offer a nice split between parameter that govern bias, variance and correlation.
The focus in this paper is how to use SDE for scenario forecast when correlation is taken into
account. In general it might be advisable to use some kind of transformation, e.g. using
quantiles, before the SDE formulation is applied, but in order to keep the formulation and
reasoning simple we have chosen not to consider transformations.

The SDE based state space formulation offers a simple and flexible framework for con-
structing very complex correlation or inter-dependence structures that are difficult to formu-
late explicitly in a direct parametric set up. The introduced framework for forecasting is able
to provide an intergrated description of the inter-dependence structure as well as the sequence



of bounded and asymmetrical state-dependent predictive densities for the future wind power
production.

The mapping from wind speed to wind power is very complex, and depends for instance
on how dirty the blades of the turbines are. Hence, state-of-the-art methods for wind power
forecasting of today, includes some methods for adaptive estimation of the parameters (e.g.
Madsen, 2008). Such techniques must be integrated with the SDE approach before any oper-
ational state-of-the-art performance can be expected.
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