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Abstract 
 
Many modern applications of magnetic resonance imaging (MRI) require high 
temporal and spatial resolution. Because the data acquisition speed is fundamentally 
limited by physical and physiological constraints it is important to find approaches to 
reduce the amount of acquisitions without deteriorating the image quality. Many 
existing solution strategies are based on strong a priori assumptions about the 
unknown object, which often introduces undesirable bias in the image. To overcome 
this difficulty, we have recently introduced a novel algorithm that estimates the 
deformation between nearby frames and incorporates this information into the 
reconstruction process. Our method is not restricted to affine or rigid motions, and 
does not need additional measurements. In the present study, we present further 
reconstruction results from phantom and in vivo cardiac measurements demonstrating 
the increased temporal and spatial resolution of our approach compared to state-of-the 
art algorithms. 
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1. Introduction 

High temporal resolution is crucial for many real-time MRI studies of dynamic 
evolution processes, such as cardiovascular imaging. Achieving high acquisition speed 
is challenging due to hardware limitations and the risk of peripheral nerve stimulation. 
Many techniques and strategies have emerged to reduce the amount of acquired data 
without degrading the image quality. Among these efforts, a recent and important 
development is the adaptation of a parallel imaging concept that makes use of multiple 
receiver coils to acquire data simultaneously. The spatial information related to the 
coil elements is utilized for reducing the amount of conventional Fourier encoding. 
Due to serious undersampling and because the coil sensitivities are generally unknown 
the reconstruction problem often reduces to be ill-posed. Regularization methods have 
to be exploited to obtain plausible solutions, by incorporating a priori information 
about the unknown object (modeled by the proton density function) and the coil 
profiles (see e.g. Uecker et al 2008; Uecker et al. 2010). In (Knoll et al, 2012) total 
variation and total generalized variation were used as regularization functional. Such 
approaches reduce streaking artifacts but also fail to recover tiny details of the object. 
In seriously undersampled situations, regularization itself is not enough to guarantee 
high quality images. 

To overcome these limitations, in (Li et al, 2013) a novel reconstruction method has 
been suggested for real-time MRI. This combines the ‘self-navigation’ idea with a 
nonlinear formulation to simultaneously estimate proton density and coil sensitivity 
profiles. As is shown there, the method produces superior visual quality images with 
high temporal fidelity. In this study, we shall further examine this method by 
comparing it with state-of-art algorithms on more challenging phantom and in vivo 
human cardiac data. 



 

 
2. Theory  

In this section, we will briefly review Aggregated Motion Estimation (AME) (Li et al, 
2013), see Figure 1. It integrates non-parametric motion correction into the recently 
developed nonlinear reconstruction method for highly undersampled radial MRI data 
with multiple receiver coils of (Uecker et al, 2008; Uecker et al, 2010).  

 
Figure 1. Flow diagram illustrating the AME nonlinear reconstruction method for reconstructing the t-th frame, with K 
= {−1, 0, 1}. 

 

2.1. Parallel Real-time Magnetic Resonance Imaging 

Based on its mechanism, the measurement model of parallel real-time MRI can be 

expressed as 

             yt,l = St F(ρt�ct,l) + εt,l,  l ∈ Λ:={1, …, N}.                (1) 

Here ρt denotes the image (spin density) of t-th frame, ct,l the coil profiles, εt,l the noise, 

St the sampling operator in k-space, and F the Fourier transform. The problem is to 

obtain a series of proper images (ρt) from the measured data (yt,l). Essentially, the 

number of samples (M) determines the scanning time for each frame. It follows that 

the choice of M is a trade-off between temporal and spatial resolution. 

2.2. Aggregated Motion Estimation for Nonlinear Reconstruction 

Each frame was preliminarily reconstructed by the nonlinear inversion (NLINV) 
method (Uecker et al, 2008; Uecker et al, 2010). Then, the motion (or deformation) 
between frames is estimated on these images, via the TV-L1 optical flow model (cf. 
Wedel et al, 2009; Chambolle & Pock, 2011). More precisely, the motion field ut,s(x) 



from ρt to ρt+s is estimated by the solution of 

minu,v ||ρt + ∇ρt �u – ρt+s + v||1+λ||∇u||1+µ||∇v||1, 

where v is an assistant variable modeling the changes of artifacts between images.  

Let K ⊂ Z be of finite elements, such as {−1, 0, 1}, and Φt,s(ρt)= ρt(�+ut,s(�)), for s ∈ 
K. By variable substitution, we obtain from (1) 

                   St+s F(Φt,s(ρt)�ct+s,l) = yt+s,l, l ∈ Λ, s ∈ K.               (2) 

Compared with (1), we see that there are |K| times more samples for solving ρt, while 
preserving the same temporal resolution. As shown in Figure 1, the AME nonlinear 
reconstruction method (Li et al, 2013) is to solve (2) by the iteratively regularized 
Gauss-Newton method (IRGNM, Bakushinskii, 1992; Bauer et al, 2009) with proper 
regularizations. In detail, it comes to the following iterations: 

hn= argminh Σs||St+s F(Φt,s(ρt)�ht+s,l)+St+sF(Φt,s(h0)�ct+s,l) – (yt+s,l – St+s F(Φt,s(ρt)�ct+s,l))||2 

+αn||ρt
(n)+h0–ρt

0||+αnΣs,l||a(1 + b||�||2)m/2F(ct+s,l
(n)+ht+s,l – ct+s,l

0)||2,  

xn+1 = xn + hn, 

where xn = (ρt, (ct+s,l
(n)))T, h = (h0, (ht+s,l))T and the initial guess x0 = (ρt

0,(ct+s,l
0))T.  

Concerning the algorithms for solving these minimization problems in this subsection, 
we refer to (Li et al, 2013). 

 

3. Reconstruction results 

In this section, the AME nonlinear inversion method is evaluated on both phantom and 
in vivo human cardiac data. All MRI measurements were performed at a 3T MRI 
system (Siemens Magnetom TIM Trio, Erlangen, Germany). We used a radio 
frequency (RF)-spoiled radial FLASH (fast low angel shot) pulse sequence for data 
acquisition (cf. Zhang et al, 2010). As for phantom study, a 32-channel head coil 
(Siemens Healthcare, Erlangen, Germany) was used and the rotational speeds were 
controlled at angular velocities of 0.5 Hz, 1.0 Hz, and 1.5 Hz. Real-time MRI of the 
human heart without synchronization to the electrocardiogram and during free 
breathing was performed with a 32-channel cardiac coil consisting of an anterior and 
posterior 16-coil array. 

For comparison, the NLINV method (Uecker et al, 2008; Uecker et al, 2010) was also 
used for reconstruction. Moreover, the NLINV method incorporating a temporal 
median filter with a window width corresponding to the interleaved multi-turn 
arrangement as post-processing would be denoted by NLINV-MED.  

The comparison of these methods on phantom data with different speeds is shown in 
Figure 2. In the slow rotation, the image obtained by NLINV contains noticeable 
artifacts, which are reduced by NLINV-MED and AME as arrow indicates. In the 
moderate speed, the image by NLINV shows stronger streaking artifacts than the slow 
rotation case; the result by NLINV-MED is the worst, where the outmost hole away 
from rotating center (with fastest line speed) is deteriorated to a worm-like shape, as 
pointed by the arrow; by contrast, AME still retains the hole shape and suppresses the 
artifacts. In the fast rotation, the images by NLINV and NLINV-MED contain many 
prevailing streaking artifacts, and distorts the shape of holes; on the other hand, the 
result by AME keeps the shape of all three holes with few weak artifacts.  



 
Figure 2. Reconstructions of phantom data by NLINV, NLINV-MED and AME, which are arranged from left to right 
correspondingly. From upper to lower, it corresponds to different rotating angular speeds of 0.5 Hz, 1.0 Hz, and 1.5 
Hz.  

 
Figure 3. Reconstruction of the human heart in a short-axis view at temporal resolutions of 10 ms and 18 ms. The 
upper row lists the reconstruction results of NLINV, NLINV-MED and AME with 10 ms per frame; the lower one 
corresponds to 18 ms.  



 

Figure 4. Temporal evolution of the marked line in human heart images in a short-axis view. The temporal resolutions 
of the left and right subfigures are 10 ms and 18 ms, respectively.  

Figure 3 shows a short-axis view of human heart in seriously undersampled situations 
at temporal resolutions of 10 ms and 18 ms. We clearly see that the images by AME 
again presents least artifacts (upper-left) of the three. It is also worth noting that the 
improvement of AME is more significant at much lower sampling rate, compared with 
NLINV and NLINV-MED. The corresponding temporal profiles of specific lines are 
shown in Figure 4. The reconstruction by AME gives best temporal continuity and 
eliminates the scale-like artifacts, which correspond to the flickering artifacts in the 
sequences of images. 

 

4. Conclusions 

This work has further examined our recently proposed reconstruction method for 
parallel real-time MRI, showing that it offers improved image quality. Experimental 
results on phantom and in vivo human cardiac data demonstrate desirable performance 
in terms of temporal and spatial resolution. The present results may be even further 
improved by exploiting other type regularizations, such as sparsity-based ones. Such 
ideas will be the subject of future work.  
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