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Abstract

Forecasting mortality has been a vital issue in demography and actuarial science. It has
important implications for the pension plan and long-term economic forecasts of the
nation. In the present paper, we evaluate statistical properties of the well-known Lee-
Carter method for forecasting mortality. Here, it is assumed that a series of life tables
represents a realization of a high dimensional cointegrated process. We also propose an
alternative method. Throughout theoretical and experimental analyses, we find that
the proposed method is more accurate than the Lee-Carter method for short-term (say,
the 1st to the 10th period ahead) and medium-term (say, the 20th to the 30th period
ahead) forecasts, although both methods have the similar accuracy for long-term (say,
the 50th period and further ahead) forecasts. We further find more favorable results
of the proposed method in the analysis of the mortality data of Japanese male for the
short-term forecasts.

Keywords: Cointegrated process, life table, Monte Carlo experiment, Mortality fore-
casting, principal components

1 Review of the Lee-Carter Method and a Mortality Model

(a)　Review of the Lee-Carter Method
We first review the Lee-Carter (hereafter, LC) method for forecasting Mortality. Let
wat denote the mortality rate of age a = 1, 2, · · · ,m, and year t = 1, 2, · · · , T . In the
LC method, we actually analyze the log of the original data yat = log(wat). Here, we
introduce, for the sake of simple presentation, (m× 1) vector yt = [y1t, · · · ymt]

′. Next,

we define the deviation from mean ỹt = yt− ȳ, where ȳ = 1
T

∑T
t=1 yt is the sample mean.

We proceed to the singular value decomposition: Let f1 be the first characteristic vector.
Next, we obtain the first principal component (PC) as {f ′

1ỹt} and suppose that f ′
1ỹt is

approximated by a random walk with the drift. The drift is estimated as follows:

T−1∑
t=2

f ′
1∆ỹt == f ′

1∆y.

Then, h period ahead forecast of the first PC is given by f ′
1∆yh + f ′

1ỹT . Finally, the
LC forecast is obtained by multiplying f1 to it and adds the sample mean, in order to
get forecasts for yT+h:

ŷLCT+h = f1(f
′
1∆yh+ f ′

1ỹT ) + ȳ = f1f
′
1∆yh+ f1f

′
1ỹT + ȳ = f1f

′
1∆yh+ yLCT . (1)

(b)　A Mortality Model
In the standard prediction theory in time series analysis, we first set the DGP (data
generating process), and construct the forecast based upon the assumed DGP. However,
Lee and Carter (1992) does not assume any DGP for yt. In such a situation, we cannot
analytically evaluate forecasts. Further, without the DGP for yt, we do not know what
f1 and f1f

′
1∆y in (1) try to estimate. In this paper, we explicitly assume the DGP for

yt.
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Figure 1: Log of Mortality Rate of Japanese Male (Age 0 to Age 109)

In order to get insight in the movement of yt, Figure 1 shows mortality of Japanese
male, from age 0 to age 109, for 1947 - 2009, obtained from Human Mortality Database2.
We can see from this figure that each element of yat has a linear downward trend and
shows a similar movement each other. Similar movements among I(1) elements suggest
that yt can be approximated by a cointegrated process. It is in accordance with some
previous studies such as Bell (1997) and Darkiewicz and Hoedemakers (2004), which
state that cointegration analysis is useful for evaluating and adjusting the Lee-Carter
method.

We assume that the DGP for yt is explicitly expressed as the following model

∆yt = C(L)(εt +ΦDt), εt ∼ i.i.d.(0,Ω), t = 1, · · · , T, (2)

where ∆yt is the first difference of yt, C(L) =
∑∞

i=0CiL
i is such that C(z) is convergent

for some |z| < 1 + δ with some δ > 0, Dt is the deterministic term, Φ is its parameter
matrix、and Ω is the variance-covariance matrix which is symmetric and positive defi-
nite. For the deterministic term ΦDt, it is modeled as ΦDt = d1 + d2t,where d1 and d2
are (m× 1) parameter vectors. On the other hand, the level model is written as

yt = γ + µt+ C

t∑
s=1

εs + C∗(L)εt = γ + µt+ C

t∑
s=1

εs + ε∗t , (3)

where µ = Cd1 + C∗(1)d2 = Cd1 + d∗2, C = C(1), C∗(L) =
∑∞

i=0C
∗
i L

i, and C∗
i =

−
∑∞

j=i+1Cj (i = 0, 1, · · · ). C∗(z) is convergent for |z| < 1 + δ with some δ > 0.

γ = C∗(1)d1 − (
∑∞

i=1 iC
∗
i ) d2. The representation (2) or (3) is the model for the DGP

in this study. We may note that the implication of the deterministic term implies that,
multiplying β′ to (3) from left, we have

β′yt = β′γ + β′d∗2t+ β′ε∗t . (4)

It means that cointegrating relation gives trend-stationarity rather than mean-
stationarity.

(c)　Criterion of Forecasting Accuracy
In this paper, we here employ trace MSE (mean squared error) as a a measure of
forecasting accuracy which has been widely adapted in previous studies. Trace MSE
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is defined as follows: Let eiT+h be the forecasting error of the i-th forecasting method,

eiT+h = yT+h − ŷiT+h, where ŷiT+h is the (m × 1) forecasting vector of the i-th method

for period T + h. Trace MSE is defined as expectation of squared eiT+h as follows:

tr MSE(ŷiT+h) = tr (E(eiT+he
i′
T+h)) = E(ei

′
T+he

i
T+h).

2 Theoretical Properties of the Lee-Carter Method

(a)　 Strong Points of the Lee-Carter Method
The LC forecast is asymptotically given by

ŷLCT+h ≈ µh+ yLCT , (5)

where “≈” means the asymptotic property when T is large.
From (5), we can see that the LC method correctly captures the drift term. Thus,

the LC method is optimal in the long-term forecasting as discussed in Chigira and
Yamamoto (2012).

Another strong point is that the LC method is very simple to execute. Namely,
it estimates only one parameter, that is, the drift term of the first PC. Conventional
forecasting methods for a cointegrated process need to estimate the whole system, and
the number of parameters to estimate is O(m2), and accuracy of estimation deteriorates
when the sample size T is small, and then the forecasting accuracy will also deteriorate.
The LC method does not suffer the problem. This point is quite important for the
analysis of mortality data where T is usually not sufficiently large relative to m.

Further, as Lee and Carter (1992) asserts, it is easy to construct the confidence
interval of the forecast.

(b)　Weak Points of the Lee-Carter Method
As Girosi and King (2007) states that, since the LC method uses only the first principal
component, information contained in the rest of principal components are thrown away.
The information loss results in the following two weak points.

(i) The starting point of forecast yLCT in (5) deviates from yT .
(ii) The drift term is inefficiently estimated.

Further, the LC method applies the principal component analysis without detrending
the data yt, although it apparently has a negative trend. It results in the third weak
point, that is, lack of cointegration restriction in its forecasts.

3 Alternative Method: The MTV Method

In order to overcome the weak points of the LC method, we employ the MTV（multi-
variate time series variance component） method. the MTV method for a cointegrated
process was introduced in Chigira and Yamamoto (2009). The MTV method employs
the principal component analysis as in the LC method, but they are different in two
respects: First, the MTV method applies the principal component analysis after de-
trending the data yt. Second, the MTV method uses all principal components in con-
structing forecasts. Thus, it does not loose information and cointegration restrictions
are imposed on its forecasts.

We briefly describe the MTV method below: In order to apply the MTV method,to
the model (2) or (3), we regress yt on the constant term and the trend term in order
to detrend the data yt. The detrended residual vector is given by y̌t = yt − γ̂ − tµ̂trend,
where γ̂ and µ̂trend are the the OLS estimates of the constant and the trend terms,
respectively.

Based upon y̌t, we proceed to the singular value decomposition. Let B(m−r) =[
b1 . . . bm−r

]
and B(r) =

[
bm−r+1 . . . bm

]
, where b1, · · · , bm are the characteristic

vectors corresponding to the 　 characteristic values π1 ≥ · · · ≥ πm. We have the
following property:{

B′
(m−r)y̌t ≈ I(1),

B′
(r)y̌t ≈ I(0).

(6)



Table 1: Distribution of estimated rank of cointegration (r̂)
(a) No restriction (b) A priori restriction r ≤ 29

T\r̂ 26 27 28 29 30 T\r̂ 26 27 28 29 30

50 1.6 24.5 48.7 13.1 12.1 50 2.5 30.3 53.4 13.8 0
100 2 57.3 35.2 2.7 2.8 100 2.1 59.1 36 2.8 0
200 0.9 89.5 9.1 0.5 0 200 0.9 89.5 9.1 0.5 0
500 0.8 93.8 5.2 0.2 0 500 0.8 93.8 5.2 0.2 0

We, then, forecast with an ARIMA(p,1,q) model for each of the first to the (m− r)-th

principal components B̂′
(m−r)y̌T+h

, and with an ARIMA(p,0,q) model for each of the

(m− r + 1)-th to the m-th principal components B̂′
(r)y̌T+h

.

We next multiply the characteristic vector matrix to the above forecasts in order to
obtain the forecast of y̌t. Finally, we add the constant and the drift terms back to get
the forecast of yT+h. Specifically, we have

ŷMTV
T+h = (T + h)µ̂trend + γ̂ +B(m−r)B̂

′
(m−r)y̌T+h

+B(r)B̂
′
(r)y̌T+h

. (7)

Thus, the number of parameters to estimate increases as O(m), and substantially
less than that of the VEC (vector error correction) model which is the standard one
used for the analysis of a cointegrated process. We can also show that the MTV method
satisfies the cointegration restrictions.

4 Monte Carlo Experiment

(a)　Design of Experiment　
The following VEC is used as the DGP:

∆yt = αβ′yt−1 + µ+ εt, εt ∼ NID(0, Im), (8)

where α is (m× r) full-rank matrix.
We consider the case where m = 30 and r = 27, T = 50, 200 and h = 1, 2, · · · , 5,

10, 20, 30, 40, 50. The number of replication is 1000. This case mimics the actual situ-
ations where m is relatively large to the sample size T . Specific parameter values of α
and β are omitted in lieu of space.

We compare the forecasts of the MTV method (7 ) and the LC method (1), and the
individual ARIMA method. The individual ARIMA method is to fit ARIMA model to
each series {yat} (a = 1, 2, · · · ,m). The orders of AR and MA parts are determined by
SBIC for each series. We denote forecasts of the individual ARIMA method as ŷARIMA

T+h .
In practice, the cointegration rank r is unknown and we have to estimate it. For that

purpose, as a practical expedient, we sequentially apply the stationary test of Kurozumi
and Tanaka (2010) which is the improved version of Kwiatkowski et al.（KPSS） (1992)
test to ecah principal component {b′iy̌t} (i = 1, 2, · · · ,m). The cointegration rank ob-
tained in this way is denoted as r̂. Table 1 shows how it works in our experiments.

In order to compare forecasting accuracy, we calculate the following 2 trace MSE
ratios:

ratio(MTV) =
tr MSE(ŷMTV

T+h )

tr MSE(ŷARIMA
T+h )

, and ratio(LC) =
tr MSE(ŷLCT+h)

tr MSE(ŷARIMA
T+h )

.

If the ratio is less than unity, the forecast in the numerator is more accurate than the
individual ARIMA method and vice versa.

(b)　Experimental Results
Trace MSE ratios are given in Table 2. When the sample size is small, T = 50, the
forecasting accuracy of the MTV method is almost the same as the individual ARIMA



Table 2: trace MSE ratios
T = 50

h 1 2 3 4 5 10 20 30 40 50

ratio(MTV) 1.04 0.99 0.96 0.96 0.96 0.98 1.00 1.02 1.04 1.05

ratio(LC) 1.82 1.32 1.16 1.11 1.07 1.03 1.01 1.01 1.01 1.01

T = 200
h 1 2 3 4 5 10 20 30 40 50

ratio(MTV) 0.92 0.88 0.86 0.86 0.87 0.92 0.96 0.99 1.00 1.01

ratio(LC) 4.15 2.59 2.08 1.86 1.70 1.41 1.24 1.17 1.14 1.12

Table 3: trace MSE ratio（Japanese Male, age 30 ～ age 59）

m = 30、r̂ = 27
h 1 2 3 4 5

ratio(MTV) 1.04 0.74 0.73 0.50 0.25

ratio(LC) 3.39 4.08 4.83 3.27 3.00

method, whereas that of the LC method is worse than the individual ARIMA for the
short- and the medium-term forecasts. As T is increased to 200, the MTV method
becomes more accurate than the individual ARIMA for the short- and the medium-
term forecasts, whereas the forecasting accuracy of the LC method deteriorates for the
short- and the medium-term forecasts. For the long-term forecasts, both trace MSE
ratios converge to unity as discussed in Chigira and Yamamoto (2012).

5 Applications to Japanese Mortality Data

We apply the three methods to the mortality data of Japanese male from age 30 to 59.
The data from 1947 to 2004 is used for estimation and from 2005 to 2009 for forecasts.
The data was obtained from Human Mortality Database. Table 3 shows trace MSE
ratios of forecasts. The MTV method is substantially better than the ARIMA method
except the first period ahead. The LC method extremely worse than the individual
ARIMA method, ratio(LC) being greater than 3. Thus, in the short-term forecast, su-
periority of the MTV method over the LC method is more evident than the experimental
results in the previous section suggest.

6 Concluding Remarks

In the present paper, we evaluated the LC method in the perspective of time series
analysis, more specifically, in the framework of a cointegrated process. We also proposed
an alternative, the MTV method. We have found the MTV method is superior to the
LC method in the short- and the medium-term forecasts both in experiments and in an
empirical application. It may be further noted that the LC method is inferior even to
the individual ARIMA method in the short- and the medium-term forecasts.
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