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Abstract

Approaches to elucidate complex gene regulatory networks usually rely on the analysis of
transcriptional modules (TMs). Two high-throughput technologies, gene expression mi-
croarray and Chromatin Immuno-Precipitation on Chip, often provide complementary in-
formation for discovering TMs. To efficiently integrate these two data sources, we propose
a novel Bayesian model referred to as Coupled Finite Mixture Model (CFMM), which per-
mits a separate clustering for each data source and also explicitly models their dependence.
We validate our model in both a synthetic dataset and a real dataset. Our method is shown
to find more consensus genes and the resulting TMs have improved biological functional
coherence than those inferred by other state-of-the-art methods.

Key Words: Chip-chip data, gene expression, integrative clustering

1 Introduction

Transcriptional regulation is a crucial part of the whole regulatory mechanism in any
living organism. For context-specific cellular activities, the products of genes with sim-
ilar biological functions often interact with each other to form complexes, hence those
genes exhibit similar expression pattern over time and space. Besides, the transcription
initiation of gene expression is usually controlled through the cooperation of one or more
sequence specific transcription factors that bind to the promoter sequences of their tar-
get genes. Two high-throughput technologies, gene expression microarray and Chromatin
Immuno-Precipitation on Chip (Chip-chip), are capable of providing such distinct but com-
plementary information (Eisen et al., 1998; Hughes et al., 2000). To unravel the underlying
transcriptional modules by an optimal modeling of the two biological assays is therefore an
important open problem in computation biology.

Various methods have been proposed for identifying transcription modules by integrat-
ing gene expression and transcription binding data. Most of them are clustering-based
methods, including hierarchical clustering (Eisen et al., 1998), K-means (Tavazoie et al.,
1999) and self organizing map (Tamayo et al., 1999). Those methods often first cluster
genes into modules based on the expression data, then attempt to find common transcription
factors bound to each group of genes by some ad hoc algorithms. Genetic Regulatory Mod-
ules(GRAM) method (Bar-Joseph et al., 2003) and ReMoDiscovery algorithm (Lemmens
et al., 2006) employ the similar technique by reversing the above two steps. However, this
two-step procedure strongly relies on the assumption that co-expression and co-regulation
are equivalent, which may not be valid in most cases.

Considering that gene expression and transcription binding data have their own source
specific features and the inter-source correlation between them, an optimal method should



simultaneously modeling the two datasets and their dependence. Liu et al. (2007) de-
veloped a Bayesian hierarchical model that draws context specific clusterings and connect
those clusterings through a common hyperparameter. More recently, Savage et al. (2010)
adopted a modified hierarchical Dirichlet process mixture model to infer the context specific
clusterings and also identify the consensus genes in both datasets.

Kirk et al. (2012) proposed a method called MDI (Multiple Dataset Integration) that
assumes a finite mixture model for each dataset and captures their dependence by a param-
eter describing their cluster membership agreement. In the same spirit, we develop a novel
Bayesian coupled finite mixture model for simultaneously modeling gene expression and
Chip-chip data. Compared to MDI, our model has greater power to learn the dependence of
their cluster memberships for it does not assume any specific form of the dependence. For
Savage et al. (2010)’s method and MDI are shown to have comparable results and outper-
form other clustering methods in finding the transcription modules, hence, we will compare
the result generated by our model with that of Savage et al. (2010)’s and MDI.

2 Methods

Suppose we have n experiment units, i = 1, ...,n, and for each unit i, we have obser-
vation data yi1,yi2 in two datasets. Denote ys = (y1s, ...,yns), s = 1,2, and y = (y1,y2).
We assume y1,y2 are generated by finite mixture models and both of them have K mixture
components. For y1,y2 are measurements of those units at different features, they do not
necessarily have the same partition structure. Nevertheless, for those features are corre-
lated, y1,y2 provide disparate but complementary information for each other. Let zi1,zi2 be
the component indicators of yi1,yi2 in their own mixture models, respectively. We would
like to construct a joint distribution of zi1,zi2 such that zi1,zi2 are dependent and the model
could learn their dependence flexibly from the data. Thus, we assume

p(zi1 = k,zi2 = q) = p(zi1 = k)p(zi2 = q|zi1 = k) = πkϕkq.

where 0 ≤ πk ≤ 1, 0 ≤ ϕkq ≤ 1, ∑K
k=1 πk = 1, ∑K

q=1 ϕkq = 1. Here we just use the
basic property of joint distribution and do not presume any specific form of the depen-
dence. Interestingly, our model includes the independent clustering model and the joint
product likelihood clustering model as special cases with all ϕkq = π̃q and all ϕkq = 1, re-
spectively. Denote zs = (z1s, ...,zns), s = 1,2, z = (z1,z2), ϕk = (ϕk1, ...,ϕkK), k = 1, ...,K,
ϕ = (ϕ1, ...,ϕK). Assuming given z1 and z2, y1 and y2 are independent. Here y1 is the
expression data and y2 is the Chip-chip data.

For the expression data, suppose we have T experiment measurements for each gene
and assume they follow the Gaussian distribution, that’s

f (yi1|zi1,µ,Σ) = f (yi1| µzi1 ,Σzi1),

where µ = (µ1, ...,µK),Σ = (Σ1, ...,ΣK), are the component parameters.
For the Chip-chip data, assuming that we have m TFs, we would like to cluster them

into the significant/nonsignificant groups. For significant TFs, they are supposed to have
much larger binding probability than those nonsignificant TFs with genes in experiment,
and hence they are the TFs of interest. Let νik = 1 if i-th TF is significant in the k-th
cluster of Chip-chip data, otherwise νik = 0. We assume TFs in each group have the group
specific binding probability, and denote them as θ1,θ0 for the significant/nonsignificant



group, respectively. Denote ν = (ν11, ...,νm1, ...,ν1K , ...,νmK), θ = (θ0,θ1). Assuming
those TFs are independent, we have

p(yi2|zi2,ν ,θ) =
m

∏
w=1

θ yi2,w
νwzi2

(1−θνwzi2
)1−yi2,w .

Denote φ = (π,ϕ ,µ,Σ,θ). Adopting conjugate priors for those parameters, we obtain
the full generative model as follows.

π ∼ Dir(α/K, ...,α/K), ϕk ∼ Dir(β/K, ...,β/K),

µk ∼ N(µ0k,κ0Σk), Σk ∼ Inverse Wishart(ω0,Λ0),

θ0 ∼ Beta(γ01,γ02), θ1 ∼ Beta(γ11,γ12), ντk ∼ Binom(1,ζ ),
zi1 ∼ Multinom(1,π), zi2|zi1 ∼ Multinom(1,ϕzi1),

f (yi1,yi2|zi1,zi2,ν ,φ)∼ f (yi1|µzi1 ,Σzi1)p(yi2|zi2,ν ,θ),
i = 1, ...,n, k = 1, ...,K, τ = 1, ...,m, s = 1,2.

In our model, since not all components are occupied in the two datasets, K just places an
upper bound for the number of clusters, hence our model is not restrictive in application. We
employ the Gibbs sampling algorithm to draw posterior samples for the parameters. Based
on the posterior similar matrix, we extract the most likely cluster partition for each dataset
using the method of Fritsch and Icstadt (2009). Besides, those genes that are consensus
in both datasets are of interest, using the terminology of Savage et al. (2010), they are
called fused genes. To find those fused genes, we first reassign the cluster labels of those
genes such that the contingency table of the two clusterings satisfies that nkk ≥ nk j, j > k,
and n11 ≥ n22 ≥ ... ≥ nηη , where nk j is the (k, j)-th element of the contingency table, and
η = min(k1,k2) with k1, k2 being the number of the resulting clusters of the expression data
and the Chip-chip data, respectively. Then we treat those relabeled genes having the same
cluster labels in the two datasets as fused genes, or use some criteria to filter them.

3 Results

3.1 Synthetic dataset

We first generate independent xi ∼ N
((

0
0

)
,

(
1 ρ
ρ 1

))
, i = 1, ...,200. Then let

zi1 = 1, if xi1 ≤ q0.25; zi1 = 2, if q0.25 < xi1 ≤ q0.5; zi1 = 3, if q0.5 < xi1 ≤ q0.75; zi1 = 4, if
q0.75 < xi1. Here qα is the α quantile of standard normal distribution. Similarly, we set the
value of zi2. Here ρ controls the dependence of zi1,zi2. Given zi1,zi2, we generate yi1,yi2 as
follows.

(1) yi1|zi1 = 1 ∼ N((0,0,0,0), I), yi1|zi1 = 2 ∼ N((2,2,0,0), I),
yi1|zi1 = 3 ∼ N((0,0,2,2), I), yi1|zi1 = 4 ∼ N((2,2,2,2), I);

(2) yi2|zi2 = 1 ∼ JIB(0.85,0.85,0.10,0.10), yi2|zi2 = 2 ∼ JIB(0.10,0.10,0.85,0.85),
yi2|zi2 = 3 ∼ JIB(0.10,0.10,0.10,0.10), yi2|zi2 = 4 ∼ JIB(0.85,0.85,0.85,0.85).

Here JIB denotes the joint independent Bernoulli distributions. We compare four mod-
els: independent clustering model, joint product likelihood clustering model, MDI and
CFMM. We choose different values of ρ with ρ = 0, 0.74, 0.93, 0.993, 1, such that the
overlapping rate γ (γ = ∑n

i=1 I(zi1=zi2)
n ) equals 0.25, 0.50, 0.70, 0.90, 1, respectively. For each



case, we draw 5000 posterior samples and regard the first 2000 as burn in and repeat the sim-
ulation for 20 times. For measuring the cluster accuracy, we report the mean of the adjusted
Rand index (ARI) (Hubert and Arabie, 1985) of different chains in each case. Besides, we
also provide the sensitivity and the false discovery rate for discovering the consensus units
when γ ≥ 0.50.

Gaussian data JIB data
Indep. Joint MDI CFMM Indep. Joint MDI CFMM

γ = 0.25 0.56 0.37 0.52 0.48 0.45 0.17 0.43 0.45
γ = 0.50 0.55 0.40 0.62 0.60 0.48 0.41 0.57 0.61
γ = 0.70 0.53 0.56 0.65 0.69 0.52 0.65 0.63 0.71
γ = 0.90 0.55 0.76 0.75 0.78 0.46 0.71 0.75 0.75
γ = 1.00 0.54 0.92 0.88 0.91 0.48 0.92 0.86 0.89

Table 1: Adjusted Rand index of the four methods at different γ values

sensitivity false discovery rate
MDI CFMM MDI CFMM

γ = 0.50 0.67 0.70 0.21 0.35
γ = 0.70 0.89 0.91 0.13 0.12
γ = 0.90 0.96 0.98 0.06 0.07
γ = 1.00 0.97 0.99 0 0

Table 2: Sensitivity and false discovery rate of MDI and CFMM at different γ values

From the above two tables, we can see that CFMM has comparable performance with
MDI in the ARI, sensitivity and false discovery rate measurements. Note that when ρ = 0
(γ = 0.25) and ρ = 1 (γ = 1), both CFMM and MDI have satisfactory ARI compared to
the independent clustering model and the joint product likelihood clustering model, respec-
tively, with the latter two models being the oracle model for the corresponding case. Be-
sides, CFMM tends to report more consensus units than MDI, which results in that CFMM
usually have larger sensitivity than MDI while the false discovery rates are similar except
at γ = 0.50 where MDI performs better. In this simulation example, for it is sufficient to
use one variable ρ to describe the agreement between these two datasets, in this sense, MDI
can be regarded as the “oracle” model. The comparable results show that our model is
competitive with MDI for its great flexibility in learning the dependence between the two
datasets.

3.2 Yeast galactose dataset

We apply our model to a real example considered both by Savage et al. (2010) and
Kirk et al. (2012). The gene expression data is taken from a subset of the expression
dataset of Ideker et al. (2001), and this subset of genes has been extensively studied (e.g.,
Yeung et al., 2003). It consists of 205 genes and the data was collected from 20 different
perturbation experiments and each experiment contains four replicated runs. The expression
patterns of those genes reflect four functional categories based on GO annotations, and this
could be used to validate the cluster results. We use the average of the four replicates as
the expression level and the Chip-chip data from Harbison et al. (2004) with significance



threshold P = 0.001, which provides binding information for 204 transcription factors.
For simplicity, we assume those gene expression experiments are independent, thus we

use the univariate Gaussian distribution. We run the Gibbs sampling algorithm for 5000
iterations, and regard the first 2000 as burn-in. In each iteration, we consider the cluster
in Chip-chip dataset as significant if at least one of its TFs is significant, and set ri = 1
if gene i is assigned to one of the significant clusters. We say gene i is a fused gene if
p(ri = 1) > 0.5 in posterior samples. After collecting those fused genes, like the other
two methods, we identify a final clustering of them by maximizing the posterior expected
adjusted Rand index (Fritsch and Ickstadt, 2009).

We use the Biological Homogeneity Index (BHI; Datta and Datta, 2006) as the quality
measure of the resulting TMs. Clusters with many genes share GO annotations will have
high BHI score and perfect agreement will lead to a score of unity. We report the four
different BHI scores by considering all categories or just the biological process(bp), cellular
component(cc) and molecular function(mf) category. We identify 89 fused genes in four
clusters corresponding to the four GO annotation categories with genes in the same cluster
belonging to the same GO annotation category. More informative results are summarized
in Figure 1 and Table 3.

Figure 1: Expression data and Chip-chip data of Galactose fused genes

Method BHI(all) BHI(bp) BHI(mf) BHI(cc) No. of fused genes
Savage et al. (2010) 0.98 0.85 0.71 0.98 72

MDI 1.00 0.89 0.77 1.00 52
CFMM 1.00 0.96 0.92 1.00 89

Table 3: Comparison of BHI scores for Savage et al.’s method, MDI and CFMM

From the above figure and table, we could see that our method not only reports signifi-
cantly more fused genes, but also the resulting transcriptional modules have obvious cluster
specific expression patterns and binding patterns, and have improved functional coherence
compared with the results of the other two methods.



4 Discussion

The key innovation of our model is that it does not specify any form of the dependence
between the two datasets a prior, but learn it from the data, and this learning ability is
demonstrated in both the simulation example and the real data analysis. The results also
show that by jointly modeling gene expression data and Chip-chip data, CFMM could ex-
tract more consensus genes and the resulting transcriptional modules have greater functional
conformity than those inferred by the current state-of-the-art methods.
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