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Abstract 

Singular Spectrum Analysis (SSA) is a powerful non-parametric time series technique 

which is finding wide application in time series analysis. SSA is particular powerful 

for time series that exhibit seasonal variation with/without trend components and find 

application in time series found in market research, economics, meteorology and 

oceanology, to name but a few. Outliers that might be present in time series can 

unduly influence model fitting and forecasting results. This paper compares automated 

outlier identification techniques in SSA by simulating time series from the broad 

spectrum of time series that SSA can handle. Specific attention is paid to modern 

robust principal component analysis techniques such as ROBPCA which employs 

projection pursuit combined with estimation of robust covariance matrices. The latter 

is employed to outlier maps, which essentially represents multivariate data in a two 

dimensional plot consisting of projected orthogonal distances plotted against score 

distances, in order to identify outliers. Promising results are obtained by robust 

principal component methods and also applying additional convex hull peeling 

methods to outliers. A well-known time series with an additive outlier present is used 

to illustrate the usefulness of the techniques. 
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1. Introduction 
Singular Spectrum Analysis (SSA) is a powerful non-parametric time series technique 

that found its origins in the field of Physics (Takens, 1981; Broomhead and King, 

1986). Golyandina et al. (2001) provide a thorough introduction to SSA and can be 

consulted in gaining insight into the underlying theory and applications. 
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Note that off-diagonal elements in the matrix are not unique. The matrix has been 

coined the trajectory matrix in SSA literature and places a univariate time series into a 

multivariate framework. The dimension L   into which the column vectors are 

unfolded is termed the window length and restricted by the choice 

( )2 1 / 2L floor N ≤ ≤ +  . 

 

Buchstaber (1994) showed that time series sampled from the following broad class of 

functions with an additive property can be handled by SSA, viz. 

 

 ( ) 1
( )exp( )sin(2 )K

k k kk
y t p t t tα πϖ φ== +∑   (1.2) 



 

where ( )kp t indicate polynomials.  

 

Golyandina et al. (2001) indicated that SSA can actually handle a broader class of 

functions than the above in the form of finite difference equations or so-called linear 

recurrent formulae (LRF) of the form  

 

 1
,  1r

t r k t r kk
y a y t N r+ + −== ≤ ≤ −∑   (1.3) 

 

where ,...,1a ar  are coefficients and r  is the rank (structure) of the time series. It is 

clear that SSA can handle a wide variety of time series structure which can include 

trend with/without seasonality. The interested reader can refer to Golyandina et al. 

(2001) to further understand how singular value decomposition is used to extract 

signal structures from an observed time series and also how forecasting can be 

approached. It is clear that SSA has only two “parameters”, i.e. the window length 

( )L   and number of leading eigenvectors ( )r . 

 

Given the above schema, a single additive time series outlier at position *t t= will be 

present in consecutive column vectors of the trajectory matrix. It is not difficult to 

show that, once consecutive column vectors in the trajectory matrix have been flagged 

as outlying, that the location of the additive time series outlier will be given by 
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where        

          

• ( ) ( )( )1 ,..., no o represents a column vector consisting of the ordered index values 

of column vectors in the trajectory matrix, which were identified as outlying 

by some method; 

• 1t  and 2t  (where 1 2t t<  ) are the first and last index values of consecutive 

column vectors identified as outliers; 

• ( ) ( )( ) ( ) ( )1
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Since the column vectors of trajectory matrix in (1.1) places the time series into a 

multivariate setting, this paper proposes that methods which identify multivariate 

outliers can be combined with (1.4) to identify a single additive time series outlier. 

 

 

2. Outlier maps and Robust Principal Component Analysis (ROBPCA) 

Outlier maps were introduced by Hubert et al. (2005) to assist as a diagnostic plot in 

identifying multivariate outliers in Principal Component Analysis (PCA). The method 

has not been used in the SSA context to date. Three types of multivariate outliers exist 

according to Hubert et al. (2005), viz. good leverage points (points 5 & 6 in figure 



below), orthogonal outliers (points 3 & 4 in figure below) and bad leverage points 

(points 1 & 2 in figure below). 

 
Figure 1. PCA outlier types 

 

Outlier maps constitute a plot of individual p-dimensional multivariate observations’ 

orthogonal distance ( i
OD ) against score distance ( i

SD ).  Calculations of these 

measures can be consulted in Hubert et al. (2005). In classic multivariate analysis the 

row vectors of a data matrix are used to calculate i
OD  and i

SD . In the SSA context, 

however, the column vectors of the trajectory matrix represent observations and are 

used in the calculations. In this study the classic mean vector and PCA loadings 

(CPCA) were used to calculate these measures as well as robust PCA (ROBPCA) 

versions using the LIBRA (Library for Robust Analysis) package in MATLAB that 

was developed by Verboven and Hubert (2005). The ROBPCA method employs 

projection pursuit combined with estimation of robust covariance matrices.  

 

Multivariate outliers are identified by employing the outlier map using cut-off values 

for i
OD and i

SD . Interested readers can consult Hubert et al. (2005) regarding details of 

the cut-of limits and theoretical justifications. In this study we also used the cut-off 

limits as a first iteration to identify multivariate outliers. Practical applications yielded 

many situations where this alone did not always successfully identify outliers in the 

SSA context.  As a second iteration we then applied a quasi convex hull peeling 

(CVHP) technique. In this approach we identified outlying column vectors in the 

trajectory matrix using the cut-off limits proposed by Hubert et al. (2005). We then 

removed these observations from the trajectory matrix and used MATLAB routines to 

identify the convex hull based on coordinates ( ),i iOD SD  of remaining column vectors. 

Column vectors for which multivariate observations with i
OD  on the convex hull 

greater than the 80-th percentile of i
OD , or i

SD on the convex hull greater than the 80-

th percentile of i
SD

 
were then flagged as outliers in addition to those already 

identified using cut-off limits. The latter CVHP was applied twice. This alternative 

approach to devise cut-off limits for the outlier maps was applied to outlier maps 

generated using the CPCA and ROBPCA approaches. Results are reported in the 

ensuing section and a practical example of an outlier map with CVHP is illustrated in 

the final section of this paper. Other methods that were attempted included k-means 

cluster analysis applied to the outlier maps, instead of applying cut-off limits to i
OD

and i
SD . Simulation studies, however, indicated that this approach only performed 

well when the additive time series outlier was very large and in many cases led to false 

positive outlier identification. 

 

3. Monte Carlo simulation studies 

Monte Carlo simulations were performed as part of this study. A rank 6r =   time 

series of the form (300 1.98 ) 100(1 0.12(sin(2 /12) 1.17(sin(2 / 6))))
t t

f t t tπ π ε= + + − + +  for 

1,...,144t = was simulated 200 times with [ , ]
t

Uniform a aε −∼ . The latter choice of noise 



made it possible to control noise-to-signal ratios better. An additive outlier t t t
f f δ= +  

where 75
t

δ =  was added to each of the time series observation. The percentage time 

that the outlier was correctly identified for 1,...,144t = during the 200 Monte Carlo 

simulations are summarised in Figures 2 to 4, below. The accuracy of outlier 

identification was tested for choices of window length in the range [ ]7, 28L ∈ . Four 

different methods were compared for their effectiveness in identifying outliers, viz. 

Classic PCA (CPCA), Classic PCA combined with convex hull peeling 

(CPCA+CVHP), Robust PCA (ROBPCA) and Robust PCA combined with convex 

hull peeling (ROBPCA+CVHP). 

 

 
Figure 2. Monte Carlo simulation results (Uniform[-1,1], 75

t
δ = ) 

 

 
Figure 3. Monte Carlo simulation results (Uniform[-10,10], 75

t
δ = ) 

 

 
Figure 4. Monte Carlo simulation results (Uniform[-25,25], 75

t
δ = ) 
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200 Monte Carlo Simulations, rank= 6 function, noise uniform[ -1 , 1 ], 

outlier [ 75 ], signal [ 

orgf(i)=(300+1.98*i)+100*(1-0.12*(sin(2*pi*i/12)+1.17*(sin(2*pi*i/6)))) ]
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200 Monte Carlo Simulations, rank= 6 function, noise uniform[ -10 , 10 ], 

outlier [ 75 ], signal [ 

orgf(i)=(300+1.98*i)+100*(1-0.12*(sin(2*pi*i/12)+1.17*(sin(2*pi*i/6)))) ]
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200 Monte Carlo Simulations, rank= 6 function, noise uniform[ -25 , 25 ], 

outlier [ 75 ], signal [ 

orgf(i)=(300+1.98*i)+100*(1-0.12*(sin(2*pi*i/12)+1.17*(sin(2*pi*i/6)))) ]
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It is clear from the simulated results that outlier detection for practically noise-free 

signals are preferring the CPCA and ROBPCA for lower window lengths. As noise 

levels increase, the ROBPCA combined with convex hull peeling followed by 

ROBPCA methods reign supreme.  

 

4. Practical application 
Tsay (1988) identified an additive outlier at time t=14 in the log-transformed version 

of the well-known airline passenger time series. Figure 5, below, depicts the original 

time series and log-transformed time series. The additive outlier is evident in the log-

transformed series at t=14. 

 

 
Figure 5. Airline passenger time series 

 

Table 1, below, summarizes results from outlier position identification using (a) 

ROBUST PCA combined with convex hull peeling as proposed in this paper and (b) 

ROBPCA when using SSA.  Both the latter outlier identification methods were 

applied to time series lengths in the range [ ]50,..., 69N ∈ , window length ( )L  in the 

range [ ]4,...,9L ∈  using the leading 3r =  eigenvectors. The MATLAB version of the 

ROBPCA routines developed by Verboven and Hubert (2005) was employed to resist 

90% of outliers during multivariate outlier detection.  It is clear from the results that 

the ROBPCA method combined with convex hull peeling outperforms the ROBPCA 

technique in identifying the additive outlier present in this time series for this 

particular time series. The time series lengths were purposefully chosen to avoid the 

later section in the times series that exhibits a level change and changing variation. 

 

Table 1. Comparison of outlier detection techniques 
(a) Outlier identification using ROBPCA combined with convex hull peeling 

N (time series length) 

50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 

L 

4 * * * * 14 14 14 14 14 14 * 14 14 14 14 14 14 14 14 14 

5 14 14 14 14 14 14 14 14 14 14 14 14 14 14 * * * 14 14 14 

6 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 

7 14 14 * 14 * 14 14 14 14 14 14 14 14 14 14 14 * 14 14 14 

8 * * * 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 

9 14 8 * 14 14 * 14 14 14 14 * * 14 14 14 14 14 14 14 * 

(b) Outlier identification using ROBPCA 

N (time series length) 

50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 

L 

4 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 

5 14 14 14 14 * * 14 14 14 14 14 14 14 14 14 14 14 14 14 14 

6 14 * 14 * * * * 14 14 14 * 14 14 14 14 * * * 14 14 

7 * 14 14 * * 14 * 14 * 14 14 14 14 * * * 14 14 14 * 

8 * * * * * 14 * * * * * * * * * * * * * * 

9 * * * * * * * * * * * * * * * 7 * 8 * * 

Notes: An asterisk indicates that no additive outlier was identified by the method 

 

 

0 50 100 150 200 250
0

5

10

15

20
Original time series

0 50 100 150 200 250
0

1

2

3
Log-transformed time series



 

Figure 6. Example of outlier map (ROBPCA combined with convex hull 

peeling) 

 

Figure 6, above, is an example of an outlier map that was constructed using the first 

57N =  log-transformed airline passenger time series observations, window length 

8L =  and using the leading 3r =  eigenvectors. Double circled crosshairs indicate 

consecutive column vectors in the trajectory matrix that were identified as multivariate 

outliers. The cut-off limits, used for outlier detection as proposed by Hubert et al. 

(2005), are indicated by the vertical and horizontal lines in the plot. It is clear from the 

above depiction how the addition of convex hull peeling identifies additional columns 

as outlying and correctly identifies, using (1.4), the position of the outlier at t=14.  
 

5. Conclusions 
This paper proposed the use of robust principal component analysis (ROBPCA) 

techniques with the aid of outlier maps to identify outliers in the SSA context. It was 

clear from Monte Carlo simulation results that both the ROBPCA and ROBPCA 

combined with a convex hull peeling approaches provided promising results. 
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