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Abstract

Recently, the RNA-Seq experiment is developed for a high-throughput DNA sequencing
method for mapping and quantifying the transcriptomes. The gene expression level obtained
from a RNA-Seq experiment is of the count data type and is often fitted by a Negative-
Binomial distribution to account for over-dispersion. To find the differentially expressed
genes with a binary phenotypic response, we aim to develop a statistical test for comparing
the means of two Negative-Binomial distributions. A Wald test statistic based on the pseudo
maximum likelihood estimators is proposed. A numerical study is performed for justification
of the proposed test. The applicability of the proposed method is demonstrated via the data
analysis of two real example data sets.

Keywords: Differentially expressed genes, negative-binomial, overdispersion, pseudo maxi-
mum likelihood estimator, RNA-Seq experiment.

1 Introduction

To quantify the transcripts in a cell, the hybridization-based approaches, such as microarrays,
have become prominent due to the fact that they are high throughput and cost less. On the
other hand, although the traditional sequence-based approach can directly provide the cDNA
sequence, it is of limited use because it is relatively less effective and expensive. Recently, the
RNA-Seq experiment is developed for a high-throughput DNA sequencing method for mapping
and quantifying the transcriptomes. The method improves the existing microarray approaches
in terms of providing more accurate signals, being not limited to existing genomic sequence and
requiring less RNA sample. The RNA-Seq is believed to replace microarrays when the sequencing
cost reduces. Please see Wang, Gerstein and Snyder (2009) for a thorough description of the
experiment.

This study aims to develop a statistical testing procedure to determine whether a gene is
differentially expressed in different experimental/phenotypic conditions. For simplicity, we con-
sider a binary phenotypic response variable. It’s known that the gene expression level obtained
from a RNA-Seq experiment, differing with that from a microarray experiment, is the num-
ber of repeated reads and hence is of the count data type. The researchers assume a poisson
population, or a negative-binomial population to account for over-dispersion, for the expression
level of an individual gene. See Robinson and Smyth (2007, 2008), Robinson et al. (2010), Li
et al. (2012). Due to having simpler formulations, most of the existing methods consider the
likelihood ratio test or the score test. This study propose testing the hypothesis by directly
using the maximum likelihood estimators of the mean expression levels in the two groups under
negative-binomial distributions. However, with the existence of the dispersion parameter, the
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calculation becomes difficult and tedious. To ease the computational difficulty, a pseudo like-
lihood equation and the Stirling’s formula approximation are employed. See Piegorsch (1990)
and Nakashima (1997). The estimation provides a clear picture of the magnitude of the gene
expression. In addition, Nakashima (1997) proved that the resultant estimators have the prop-
erty of the asymptotic normality. As a consequence, we develop a chi-square test for identifying
the differentially expressed genes. Numerical studies, including simulations and real examples,
are performed to justify the proposed test.

2 Method

Denote the G × 1 random vector, Yi,j = (Yi,j,1, . . . , Yi,j,G)T , as the G counts of the j-th subject
in the i-th phenotypic group, for j = 1, . . . , ni, i = 1, . . . , k. Here for simplicity, we consider a
binary phenotypic group, k = 2. Assume for each i = 1, 2, g = 1, . . . , G, Yi,j,g have the following
a negative-binomial distribution,

Yi,j,g ∼ ind. NB(µi,j,g, φi,g), for j = 1, . . . , ni,

where µi,j,g is the mean parameter and φi,g is the over-dispersion parameter. Note that under
this distributional model,

E(Yi,j,g) = µi,j,g, V ar(Yi,j,g) = µi,j,g + φi,gµ
2
i,j,g.

As φi,g tends to zero, a negative-binomial distribution becomes a Poisson distribution. Moreover,
by taking heterogeneous sequence-depths into account, assume for each i = 1, 2, j = 1, . . . , ni,
there exists mi,j such that

µi,j,g = mi,jλi,g,

where mi,j is the depth of the j-th sequence in the group i, and λi,g is the mean relative
abundance of the g-th gene in the group i.

The research interest is to determine whether a gene has differential expression levels between
the two phenotypic groups. The following hypotheses are tested: For each g = 1, . . . , G,

H0,g : λ1,g = λ2,g v.s. H1,g : λ1,g 6= λ2,g.

We propose using the Wald’s test statistic based on the pseudo maximum likelihood estimators
(PMLEs) to test the hypotheses. Let

Zg =
λ̂1,g − λ̂2,g

ŜE(λ̂1,g − λ̂2,g)
,

where λ̂i,g are the PMLEs of λi,g, and ŜE(λ̂1,g − λ̂2,g) is a consistent estimate of the asymptotic
standard error of λ̂1,g − λ̂2,g for i = 1, 2, g = 1, . . . , G. Asymptotically, under H0,g, Zg ∼ N(0, 1).
Consequently, given an observed Z-value, zg0 the asymptotic p-value is found as 2(1−Φ(|zg0|)),
where Φ(·) is the distribution function of N(0, 1).

Note that in solving the PMLEs, a large observed transcript value of Yi,j,g results in a
computational difficulty. From Stirling’s formula, the following approximation is employed to
overcome the difficulty, (

N
k

)
≈ Nk

k!
, as N → ∞.
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In a genomic study, the false discovery rate (FDR) is commonly used as an experimentwise
error rate for simultaneously testing a numerous number of hypotheses. In literature, the ad-
justed p-value proposed by Benjamini and Hochberg (1995) and the local false discovery rate
proposed by Storey (2003) are two of the most popular multiple testing approaches. In this
study, the two approaches are applied on the obtained asymptotic p-values of Zg’s.

3 Results

3.1 Simulations

We consider the simulation study in Auer and Doerge (2011). The transcript levels of ten
thousands genes are generated according to the following model:

Yi,j,g
indep.∼ Poisson(λi,gνi,j,g), i = 1, 2, j = 1, . . . , ni, g = 1, . . . , 10, 000,

where λi,g is the mean transcript of the g−th gene in the group i. Suppose the first eight thou-
sands genes are not differentially expressed in the two groups, while the others are differentially
expressed. For each g = 1, . . . , 10, 000,

λ1,g
i.i.d.∼ exp(Pareto(location=3, shape=7)).

Furthermore, for g = 1, . . . , 8000, λ2,g = λ1,g; for g = 8001, . . . , 10000,

λ2,g
i.i.d.∼ exp(Pareto(location=3, shape=7)).

On the other hand, νi,j,g is the overdispersion parameter. For each gene, we generate a Bernoulli
random variable Dg with success probability p, p ∈ (0, 1) to determine the occurrence of the
overdispersion of the gene. The genes of Dg = 1 are overdispersed. If Dg0 = 1 for some gene g0,
we then generate νi,j,g0 from the following Gamma distribution,

νi,j,g0
i.i.d.∼ Gamma

(
λi,g0

φ − 1
,
φ − 1
λi,g0

)
, j = 1, . . . , ni,

for each i = 1, 2. If Dg = 0, νi,j,g = 1. We consider p = 0 for the scenario without overdispersion,
and p = 0.5 for the scenario with overdisperion. Consider n1 = n2 = 10. One hundred
replications are generated. The true FDR of the proposed method is estimated via taking an
average over the replications. Furthermore, the average over the 100 estimated FDR at each
successive rejection is reported as well. The performance of the edgeR method by Robinson et
al. (2010) and the PoissonSeq method by Li et al. (2012) are also presented for a comparison.
Robinson et al. (2010) suggested the use of the BH adjusted p-value by Benjamini and Hochberg
(1995). As well as the BH adjusted p-value, the q-value by Storey (2003) is also employed for
our PMLE method.

The results are plotted in Figure 1, in which the top panel considers the scenario without
overdispersion and the bottom panel considers the scenario with overdispersion. From (a) and
(c), we observe that our test has a slightly higher true FDR than the other two tests. From (b)
and (d), both multiplicity adjustments underestimate the true FDR and hence tend to produce
liberal results.
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Figure 1: The top panel gives the FDR curves when the overdispersion does not exist, while the
bottom gives the FDR curves when there is an overdispersion. (a), (c): The FDR curves of the
three tests. (b), (d) : The average FDR curves of the PMLE test by using the BH adjustment
and the q-value (dashed) and the FDR curve (solid).

3.2 Real Examples

The proposed test is applied to the real examples in Marioni et al. (2008) and ’t Hoen et al.
(2008). Five technical replicates of the liver and of the kidney tissue samples of a single human
were sequenced via the Illumina NGS platform. In the example from ’t Hoen et al. (2008), four
biological replicates of the wild-type and of the transgenic mice were collected. Two estimated
FDRs, the BH adjusted p-value by Benjamini and Hochberg (1995) and the q-value by Storey
(2003), are employed for the edgeR and our PMLE method. The estimated FDR curves are
presented in Figure 2.

The upper panel of Figure 2 are the FDR curves from Marioni et al. (2008), while (a)
presents the adjusted p-values by Benjamini and Hochberg (1995), and (b) gives the results
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of the q-values by Storey (2003). The bottom of Figure 1 are the FDR curves from ’t Hoen
et al. (2008). In general, the q-value, which adapts an estimate of the proportion of the null
hypotheses, is not more conservative than the BH adjusted p-value. We find that using the
BH adjustment, the proposed PMLE test and the edgeR provide a conservative result than the
PoissonSeq as seen in (a) and (c). However, using the q-value, the PMLE test is more liberal
than the edgeR. The PMLE test with the usage of the q-value is comparable with the PoissonSeq
in the first example and gives more discoveries in the second example.
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Figure 2: The estimated FDR curves by PMLE, PoissonSeq and edgeR for two data sets: (up)
the data set from Marione et al. (2008) and (bottom) the data set from ’t Hoen et al. (2008).
Moreover, in (a) and (c), the BH-adjusted p-values are used for PMLE and edgeR. In (b) and
(d), the q-values are used for PMLE and edgeR.

4 Discussion

In this study, we propose a new test based on the pseudo maximum likelihood estimation to
identify the differentially expressed genes in a RNA-Seq data set.
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