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In this paper a model-dependent approach for naultite hierarchical normal

modelling that accounts for informative probabiltgmpling of first and second level
population units is developed. The approach inwlextracting the hierarchical
model holding for the sample data given the seles@mple as a function of the
corresponding population model and the sample tiete@robabilities, and then

fitting the resulting sample model using Bayesiaethods. This approach was
developed earlier for univariate responses (Pfeféem, Moura & Silva, 2006). An

application of the approach is presented for maudgljointly Mathematics and

Portuguese Language proficiency scores obtained &®razilian evaluation study of
basic education conducted by the Brazilian Natidnafitute of Education Research
(INEP). The scores stem from applying Item Respditssory models to test results
from the ‘Prova Brasil 2009’ study. A two-level rtiuariate hierarchical normal

model is fitted, where the students and schoolsheréfirst level) units and the groups
(second level units) respectively. The analysiesricted to the students from tH 8
grade in elementary schools from the municipalityR@o de Janeiro. Simulation is
also carried out in order to assess the frequemiigterties of the approach.

Keywords: Credibility interval, Markov Chain Montgarlo; Probability weighting;
Educational assessment; sample model; multivamiateal.

1. Introduction

Multilevel or hierarchical models are frequentlyedsto model socioeconomic
data in a variety of contexts. In many applicatiomsdeling is carried out with data
obtained from complex sample surveys, possibly \iitflormative sample designs
and/or response. Sample designs and response mgunbkare said to be informative
when the model holding for the observed sampleiddentical to the model holding
for the population which the sample aims to describ

When the sample design or response mechanisnorafive, ‘naive’ fitting of
the multilevel model to the sample data withoutoarting for the design and/or
response mechanism will produce inadequate inferémcthe model holding for the
population (Pfeffermann, Moura & Silva, 2006), iretsense that it may yield biased
estimates for the model parameters and for the raqaare errors of the parameter
estimates.

To tackle this issue, several approaches were ojesél which attempt to
incorporate survey design weights in the estimatioihe multilevel population model
parameters — see for example Pfeffermann et al8)13@ovacevic & Rai (2003),
Grilli & Pratesi (2004), Asparouhov (2006), and Rdteesketh & Skrondal (2006).
Following an alternative path, Pfeffermann, Mour&#gva (2006) proposed using the
‘sample model' approach for multi-level modellingnder informative multi-stage
sampling. Their approach first extracts the hidrimiad model holding for the sample
data given the selected sample, henceforth cdiledsample model’, as a function of
the corresponding population model and the firad &wer-level sample selection
probabilities. It then fits the ‘sample model’ ugiBayesian methods.

The general ‘sample model’ approach was first aereid by Krieger &
Pfeffermann (1997) for testing of population distion functions, by Pfeffermann &
Sverchkov (1999, 2003) for the fitting of lineardageneralised linear population



regression models, and Sverchkov & Pfeffermann 3p@0r the prediction of finite
population totals. Pfeffermann & Sverchkov (200g¢di this approach to obtain small
area estimates under informative sampling. In timallsarea estimation context,
Verret, Hidiroglou & Rao(2010) used the survey virdgas an additional auxiliary
variable when fitting a model to the sample andifothe estimation of means and
MSEs using the pseudo-EBLUP approach proposed byarid Rao (2002).

All of the above mentioned approaches attempt timate the parameters of the
population model accounting for the sample selactmd possibly also response
probabilities. None of the above papers dealt with case when the proposed
population multilevel model is used to explain altiwariate response. Multivariate
responses emerge in the context of educationatsseat studies where students are
assessed using two or more proficiency tests, tthproviding a proficiency score.
Such scores are typically correlated even afteditioming on covariates.

In this paper the sample model approach is apjpdedultivariate hierarchical
normal modeling of sample data accounting for imative probability sampling of
first and second level population units. The apghoeonsists of first extracting the
hierarchical model holding for the sample data gitlee selected sample as a function
of the corresponding population model and the sarsglection probabilities, and then
fitting the resulting sample model using Bayesiagthods. This approach evolved
from similar models developed earlier for univagisgsponses.

2. Population and Sample Models

Lety denote a vector of response variables of inteagstx a vector of auxiliary
variables. We consider the following multivariateiltitevel (or hierarchical) model
given by:

Yije = X'ijicBr + Vir + Eiji @)
wherey;, denotes the value of tiketh response variable for ufitn groupi, xi is the
vector of auxiliary variables used to explain thth response variable for urjitin
groupi, B, denotes the vector of regression coefficientdHek-th response variable,
Vi, IS the common random intercept for tkéh response variable for all units in
groupi, and g;j, is the unit level error for th&-th response variable for urjitin
groupi, k=1,...p,j=1,...M;,i=1,... N.

We consider also that the random intercepts amengy:

Vik = 2k Vi T Nik 2
wherezy is a vector of group level auxiliary variables dise explain the intercept for
the k-th response variable for units in groupy, is the vector of regression
coefficients for the intercept of theth response variable, ang,, is the group level
random error for the intercept of tkeh response variable.

Here we assume that the vectajs= (nil, ...,nip)' are independent and
identically (1ID) distributed asM N (0; Q), whereMN denotes the multivariate normal
distribution. We also assume that the vectars = (g1, ...,€;p)" are 1D
MN(0; %), and are also independent of the

The model defined by (1) and (2) plus the indepeodeand distribution
assumptions is called here the ‘multivariate randomercept regression model’
(MRIRM). It contains as unknown hyper-parameters trectors of coefficients

B= (B'l, ...,B'p) "andy = (y'l, ...,y'p) ' and the variance matric&s and X.

We further assume that the sample data are obtdipet two-stage sampling
scheme. In the first stagesN groups are selected with inclusion probabilities that
may be correlated with the random effegfs In the second stage} second-level
units are sampled from groupselected in the first stage. Second stage samfding
carried out with conditional inclusion probabilgier;; = pr(j € s;|i € s), wheres
denotes the set of units sampled within groapds denotes the set of groups selected



in the first stage. These conditional probabilitieay be correlated with the outcomes
vi; = (Vij1, -, Yijp)' even after conditioning on the regressqrs

To obtain thesample model corresponding to the MRIRM defined by (1) and
(2), we first consider a model to incorporate infative sampling of the groups
(first—level units). Hence we assume that the gsoae sampled with probability
proportional to size (PPS), with the sidssatisfying:

[log(My) |vi, o3 I~N(t';0 + v'ia; ofy) ©)
where t; is a g-vector of group level regressors for theugrsizes,® is a g-vector
of regression coefficients for the group sizes; = (vil, '":Vip), and
a= (al, ...,ap)’ is a vector of regression coefficients for thed@m intercepts in the
model for the group sizes.

Note that equation (3) becomes also part of theulatipn model. Following
Pfeffermann et al (2006)he sample model defining the conditional distridiof the
v, given inclusion in the sample is:

£,(v; [y, O, ()

£.(v|p,Qa)= (4)
S 1 1 Ep(n_i)
£ (v Iy )= ——— exp( )7 v, )] ©)
p\VilBya) = oW Ty i My
el L 2
where p, :(/11.1,...,/11.}7)', with w, =z’ vy, fork=1,..p.
It is not difficult to show that:
E, (7, v,) 1
u:exp((v. -n)'a-=a' Qa) (6)
E,(m,) b 2
Substituting (5) and (6) into (4), we have aftemsaalgebra:
1 1 .
£ (v ln, Q) =ﬂeXP(_E(Vi —; ~ Q) Q 1("1 L —Qa)] (7)
2mP/?|ql

Therefore, the density distribution function in (@) Multivariate Normal with
mean uf. =p; +Qa and variance-covariance matf  =€Q . We also have
—_ ] ! 2 2
f(log(M)|v,)=N{t0+v.ia+to, o).
For the special case wii¥2, developed in the application, we have:
S ' 2
Mig | | ZjaY1 Y ®10y T30, 2

S g g g
S =| iz |=| Zi2Y2 T %202 ¥ %10y |, where Q ={ . Vzlz} :
Jle UVZ

Suppose that, within the selected groups, the umite sampled by
disproportionate stratified sampling, with the &tma membershipOI./. depended on

the vector of outcome valugg. For example, Ietpl.].=b0+y'1./.b1+(pl.j with

Py~ N(O;aé) and independently distributed. L@fi’l.j =1 (corresponding to stratum

1), if Py <c,,and 01./. =h,if ch_1<p1.j<ch, for h=2,..,H.

1 1



The sample model defining the conditional distriditof Y, given inclusion

in the sample is:
£y 1% B,V DB (7 17 3,%5,B,v,, 200

f(y.|xBv., 2=
SO By 2 ) E, (7 1%, B.v, Z0) ©
where s =(b0,b'1,a£).
It can be shown that:
E (T[]|1 |y1] X B vl'z l|J) Zfl Pr(ol] =h Iyl] x1] B Vl,z IIJ) (9)
_f A (y1])+ z fl (Ah(yl]) Ah 1(},1]))-|-f1 (1 AH(yl]))
B (T[]|1 |X1] B, VI,Z V)= zfl PI‘(OU _hlxlj B.vi,. I Y) (10)

=B, (y;) + Zf‘(Bh(yU) Byoy (7)) + £y (1 =By (7))

where f, is the sampling fraction in straturh, for h=1,...H, of group i;
¢, ~by ~byy;;
A (y,)=Pr(p; <c, ly,)=®| ————— |;
) ] j p
()

Cy _b() _b’1 U(yi]')

B, (y;) =@ n(y;) = (@(Yp)s(yp)) . with

o(p\/(1+b'12b1) ’

H(Yii) =X By + Vi, fork=1,...p.

3.  lllustration

Multilevel models have been frequently used in atiooal assessment studies
to model the proficiency scores of students asation of student and class or school
regressors. Most of these studies model a singlBcjgmcy score as the response,
using the univariate multilevel model.

Here an application of the MRIRM is presented foodelling jointly
Mathematics and Portuguese Language proficiencyesaabtained from a Brazilian
evaluation study of basic education conducted leyBhazilian National Institute of
Education Research (INEP). The scores stem fronyiagpltem Response Theory
models to test results from the ‘Prova Brasil 208Ridy. A two-level multivariate
hierarchical normal model is fitted, where the stutd and schools are the (first level)
units and the groups (second level units) respagtivhe analysis is restricted to the
performance of students from th® grade in elementary schools from Rio de Janeiro
municipality. There were 34.867 students with cagtelproficiency and predictor
variables for this grade in the city, distributedd40 schools.

‘Prova Brasil 2009’ obtained Mathematicg)(and Portuguese Language)(
proficiency scores for all students in tHe@ade in elementary schools who attended
the exam. Therefore it is not a sample survey. Heweto illustrate the potential
effects of informative sampling when fitting the ded, we considered an informative



sampling design that samples 50 schools using a deRign, with the number of
tested pupils in the school as the size measurktrem sampled 10 students within
each school by simple random sampling, thus leaidirgpmples of 500 students. The
design may therefore be informative at the schiosk Gtage) level.

We fitted the target model to the population datdere 47 main effect
predictors were considered for the initial modéfirfg. We then performed model
selection by backward elimination, and retained ed@h with only 8 predictors.
Samples of 500 students were then selected usengpécified design, and the same
main effects model with 8 predictors is fitted tch sample. Simulation estimates of
the Bias and Root Mean Square Error of the popmulatnodel parameters are
computed from deviations of the sample model esém#o the estimates obtained
fitting the model to the full population dataset.
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