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Abstract

Markov chain Monte Carlo is a powerful tool for sampling complex systems
such as large biomolecular structures. However, the standard Metropolis-Hastings
algorithm suffers from a number of deficiencies when applied to systems with
rugged free-energy landscapes. Some of these deficiencies can be addressed with
the multicanonical ensemble. In this paper we will present two strategies for ap-
plying the multicanonical ensemble to distributions constructed from generative
probabilistic models of local biomolecular structure. In particular, we will describe
how to use the multicanonical ensemble efficiently in conjunction with the refer-
ence ratio method.
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1 Introduction

Simulating the folding of biomolecules, such as proteins and RNAs, remains one of the
largest open problems in molecular biology. One approach to simulating biomolecules
is to use Markov chain Monte Carlo (MCMC). In MCMC based structure simulations,
one uses MCMC to sample the state of the system, and subsequently the samples are
used for statistical inference on the systems. This includes calculations of key integrals
and expectations, which can be used for analyzing the thermodynamics of the system.

Let Pβ(x) be the probability of finding the system in configuration x ∈ X. We will
assume that this distribution can be written on the Boltzmann form

Pβ(x) =
wβ(x)
Zβ

=
exp(−βE(x))

Zβ
,

where β depends on the temperature and E : X→ R is the energy function.
For a biomolecular system, one can normally not sample directly from Pβ(x) and

instead one uses the Metropolis-Hastings algorithm (Hastings, 1970). In this algorithm,
a sequence of states {xt}Tt=0 is generated by sampling a candidate point from a proposal
distribution x′ ∼ q(·|xt−1) at time step t > 0 and accepting the point as a realization of
Pβ(x) with probability

α(x′|xt−1) = min
(

1,
Pβ(x′)q(xt−1|x′)
Pβ(x)q(x′|xt−1)

)
.



If the point is rejected, the chain stays in the previous state, that is xt = xt−1.
In this paper we will first give a short introduction the multicanonical ensemble and

generative probabilistic models of local biomolecular structure. Subsequently, we will
discuss two strategies for applying the multicanonical ensemble to distributions con-
structed from these generative probabilistic models.

1.1 Multicanonical ensemble

For complex systems, such as biomolecular structures, the standard Metropolis-Hasting
algorithm suffers from slow convergence and poor mixing1. A number of methods has
been suggested to address these deficiencies, including the tempering based methods
and the multicanonical ensemble, see Iba (2001) or Ferkinghoff-Borg (2012) for a com-
prehensive survey. The multicanonical ensemble (Berg and Neuhaus, 1991, 1992; Lee,
1993; Berg et al., 1995) works by chaining the target distribution so that the Markov
chain mixes better. Using the energy function as a reaction coordinate, the target distri-
bution in the multicanonical ensemble is

PMUCA(x) ∝ wMUCA(E(x)) =
1

g(E(x))
, (1)

where wMUCA is the multicanonical weights and the density of states g : R→ R is given
by

g(E) =
∫

x∈X
δ(E(x)− E) dx .

Here, δ is the Dirac delta function.
In the multicanonical ensemble, samples are drawn from PMUCA instead of the orig-

inal target distribution of interest Pβ . Normally the density of states g(E) is inferred
iteratively from samples, see for instance Kumar et al. (1992), Berg (1998), Wang and
Landau (2001) or Ferkinghoff-Borg (2002). Based on an estimate of the density of states
ĝ and set of samples from PMUCA, the expectation of a function k : X → R under the
original Boltzmann distribution can be calculated by

〈k(x)〉Pβ =
∫
E∈R
〈k(x)〉EP̂ ′β(E) dE , (2)

where P̂ ′β(E) ∝ wβ(E)ĝ(E) and 〈k(x)〉E =
∫
x∈X k(x)δ(E(x) − E) dx. In practice

〈k(x)〉E can be calculated as a sample mean.

1.2 Generative probabilistic models

Hamelryck et al. (2006) suggested to use generative probabilistic models (GPM) for de-
scribing the conformational space of biomolecular. In later publications full atomic mod-
els of the protein backbone (Boomsma et al., 2008) and side chains (Harder et al., 2010)
were developed, as well as a full atomic model of RNA conformational space (Frellsen
et al., 2009). These models describe a distribution over the dihedral angles in the
molecule and the dependencies between the angles on a local length scale along the
chain of monomers. We refer to Boomsma et al. (2012) for an elaborate review of these
types of models.

As suggested by the authors, these models can be used as proposal distributions for
MCMC simulations of biomolecules (Boomsma et al., 2008; Frellsen et al., 2009). By
using such an informative well-designed proposal distribution together with an appropri-
ate target distribution, it is expected that the Markov chain will mix better and converges

1See the introduction to MCMC by Gilks et al. (1995) for a description of these problems.



faster. This is in particular expected when the GPM also is a factor in the target distribu-
tion. In the following we will consider two examples of this.

The GPMs can be used as priors when modeling biomolecular structures based on
experimental data. Rieping et al. (2005) formulated biomolecular structure determina-
tion as a Bayesian inference problem and denoted their approach inferential structure
determination (ISD). Olsson et al. (2011) suggested to use GPMs as priors in the ISD
method, and in this case we are interested in the posterior distribution

P (x,n|d) = P (d|x,n)P (n)PGPM(x) , (3)

where P (d|x,n) is the likelihood of the experimental data d, P (n) is the prior over the
data model nuisance parameters n and PGPM(x) is the GPM.

Using the reference ratio formulation (Hamelryck et al., 2010), one can also con-
struct a target distribution by combining the GPM with a distribution over some coarse
grained variable y ∈ Y, where the coarse grained variable y = m(x) is a function of the
state of the system, m : X→ Y. As exemplified by Hamelryck et al. (2010), the coarse
grained variable could be the radius of gyration of a protein or represent a protein’s hy-
drogen bonding network. For a given distribution over the course grained variable P̃ (y),
the reference ratio distribution PRR(x) is the Kullback-Leibler minimal modification to
PGPM(x) (Frellsen et al., 2012), such that the distribution over y becomes P̃ (y). Using
this notation, the reference ratio distribution is given by

PRR(x) =
P̃ (y)

P̃GPM(y)
PGPM(x) , (4)

where P̃GPM(y) =
∫
x∈X PGPM(x)δ(m(x) − y) dx. For details on the reference ratio

method, we refer to Hamelryck et al. (2010) and Frellsen et al. (2012).
In both the ISD formulation in equation (3) and the reference ratio method in equa-

tion (4), the target distribution has the general form

Pf (x) = f(x)PGPM(x) . (5)

For the sake of simplicity, we will leave out the nuisance parameters from ISD. In the
following sections, we will discuss two strategies for sampling from a target distribution
of this form using the multicanonical ensemble. We call these the explicit strategy and
the implicit strategy.

2 Explicit strategy

In the explicit case, the GPM distribution is explicitly included in the energy function.
This means that we will write the original distribution of interest as

Pf (x) = exp(−EEx(x))

where
EEx(x) = − log(f(x)PGPM(x)) .

In this case it is straightforward to apply the multicanonical ensemble, and from equa-
tion (1) we get the multicanonical target distribution

PEx(x) ∝ wMUCA(EEx(x)) .

When sampling from PEx(x) using the Metropolis-Hastings algorithm with the GPM as
proposal distribution, the acceptance probability is (Boomsma et al., 2012)

αEx(x′|x) = min
(

1,
wMUCA(EEx(x′))
wMUCA(EEx(x))

PGPM(x)
PGPM(x′)

)
.



See Boomsma et al. (2012) for details on how to use a GPM as proposal distribution.
Based on sample from such a simulation and an estimate of the density of state,

expectation under the original target distribution Pf (x) can be calculated directly using
equation (2) with β = 1.

3 Implicit strategy

In the implicit case, the GPM distribution is not included in the energy function and we
write the original distribution of interested from equation (5) as

Pf (x) = exp(−EIm(x))PGPM(x)

where
EIm(x) = − log(f(x)) .

In this case we do not apply the multicanonical weights to the GPM, which means that
the multicanonical target distribution is

PIm(x) ∝ w̃MUCA(EIm(x))PGPM(x) ,

where w̃MUCA(E) = 1/gGPM(E). This also means that the density of states is measured
with respect to GPM distribution

gGPM(E) =
∫

x∈X
PGPM(x)δ(EIm(x)− E) dx .

This redefinition of the density of states corresponds to a change of integration measure
equivalent to replacing the uniform distribution with PGPM as the reference distribution,
for further details see Ferkinghoff-Borg (2012).

As before, we can use the Metropolis-Hastings algorithm to sample from PIm(x)
with the GPM as proposal distribution. Here the acceptance probability is

αIm(x′|x) = min
(

1,
w̃MUCA(EIm(x′))PGPM(x′)
w̃MUCA(EIm(x))PGPM(x)

PGPM(x)
PGPM(x′)

)
= min

(
1,
w̃MUCA(EIm(x′))
w̃MUCA(EIm(x))

)
.

Note, that in this case we do not need to evaluate PGPM(x) in the acceptance probability.
In practice, this can speed up the simulation significantly, see Olsson et al. (2011).

In the implicit case, the expectation of function k : X → R under the original
distribution can be calculated from a set of samples and an estimate of density of states
ĝGPM(E) using an expression similar to equation (2). In this case the expression becomes

〈k(x)〉Pf =
∫
E∈R
〈k(x)〉EP̂ ′Im(E) dE ,

where P̂ ′Im(E) ∝ exp(−E)ĝGPM(E).

4 Discussion

In this paper we have presented two strategies for combining the multicanonical ensem-
ble with GPMs for simulating the folding biomolecular structures. The explicit strategy
is the straightforward application of the multicanonical ensemble, where the both f(x)
and PGPM(x) are evaluated in each Monte Carlo step. Contrary, in the implicit case we



only need to evaluate f(x) in each step, which reduces the required computations and
can significantly speed up the simulation in practice. This implicit strategy has success-
fully been applied to simulations of RNA structures (Frellsen et al., 2009), simulations
using the ISD framework (Olsson et al., 2011) and for simulations based on the refer-
ence ratio method (Hamelryck et al., 2010). From a computational point, the implicit
approach was one of the key elements in the drastic speed-up of the IDS calculation
obtained by Olsson et al. (2011).

However, for other proposals than the GPM, the term PGPM(x) has to be evaluated
in both the explicit and implicit case. Accordingly, there are no direct computational
advantages of the implicit approach for other proposal than the GPM. In that case the
main question is which strategy gives rise to the best mixing of the Markov chain? We
suggest that this question is investigated in future publications.
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