
parspatstat: An R Package for Large-Scale Spatial Analysis
with Parallel Computing

Jonathan S. W. Lee1, Reg J. Kulperger1, and Hao Yu1,2

1The University of Western Ontario, London, ON, CANADA
2Corresponding author: Hao Yu, e-mail: hyu@stats.uwo.ca

Abstract

The parspatstat package is an extension of the spatstat package for spatial anal-
ysis. It implements some of the more common functions of spatstat in a parallel
environment using the Rmpi implementation of the message passing interface (MPI)
framework. Spatial descriptive statistics such as Ripley’s K-function have wide ap-
plicability in spatial analysis but current implementations do not scale well for large
data sets. Parallel computing (high performance computing) is one solution that can
provide almost linear scalability to these applications. The usages of these functions
are kept as similar as possible to the current spatstat function to aid in updating
existing algorithms. Implementation, optimizations, and complications that arise
from parallelizing existing algorithms are discussed.

Keywords: Spatial statistics, K-function, Parallel computing, Rmpi.

1 Introduction

A spatial point process is a model that aims to describe an observed point pattern.
A point pattern is a collection of points, each of which has a spatial location in d
dimensions attached to it.
A point pattern is observed within a spatial window. Often, the spatial window
is rectangular or circular in shape for simplicity but can technically be any poly-
gon. Complex polygon spatial windows arise in practice both naturally (geographic
boundaries such as tree lines) and artificially (man made boundaries such as roads
or political divisions).
Superficial characteristics of a point pattern such as clustering (points with a ten-
dency to appear near each other) or regularity (points appearing far from each other,
also known as inhibition) can be observed from visual inspection. These character-
istics, as well as other less obvious characteristics, can be characterized through
summary statistics and summary functions.

1.1 Spatial summary statistics

The most basic summary statistic is point intensity, defined as the expected num-
ber of points in a unit area of the point pattern. Going beyond a single numeric
summary statistics are summary functions of a search radius. In a spatial point
pattern, several descriptive statistics are often used to describe the point process
characteristics. These include first-order statistics such as the empty space func-
tion F , the nearest-neighbour distance distribution function, G, and second-order
statistics such as Ripley’s K-function [2].

The F -function, known as the empty space function, denotes the probability that an
area of radius r around a typical point contains at least one point. The G-function,
known as the nearest neighbour function is the distribution of distances of a typical
point to its nearest neighbours, not including the point itself. The J-function is a
combination of the F - and G- functions. For a given point pattern, these functions
can be compared to the corresponding theoretical functions for the homogenous
Poisson process as an indicator of inhibition, clustering, or complete spatial ran-
domness. The homogenous Poisson process is assumed to be the completely spatial
random (CSR) case.
However, the aforementioned first order summary functions do not consider points
beyond the nearest neighbour, and hence may be ignoring a lot of important infor-
mation, so we can look at higher order summary functions. Ripley’s K-function [7]
is a second-order descriptive statistic that is commonly used to measure homogene-
ity of spatial point patterns. Under the assumptions of stationarity and isotropy,
the function, K(r), compares the expected number of points within a distance r
of a typical point with how many points are actually observed within distance r,
not including the point itself. Related to the K-function is the L-function which is
a variance stabilized version of the K-function and has the added benefit of being
easier to interpret visually.

1.2 Edge correction methods for spatial point processes

When computing the summary functions mentioned above, a search radius around
a certain point is often examined. When a point is near the edge of the observation
window, any part of the search circle outside the observation window will be cen-
sored, leading to a biased estimate of the statistic. As such, edge correction methods
are applied and in fact, the K-function is independent of the shape of the study area
when edge effects are corrected for properly [3]. The uncorrected estimate is known
as the naive estimator.
Common edge correction methods include toroidal correction, where the edge on
one side can be thought of as being wrapped around to the opposite edge. This
only works for rectangular observation windows and only if the assumption of point
behaviour on opposite sides of the window to be the same is met. Computationally
for large data sets, the border method (minus sampling) is often used. Here, points
near the edge are ignored for the purposes of the estimation but are still considered
as neighbours for interior points. The disadvantage here is that much of your data
may be ignored, especially for large search radiuses, r.
Perhaps the most popular edge correction is Ripley’s original proposed edge correc-
tion, known as isotropic correction or simply Ripley’s correction. Here, the naive
K estimate is adjusted by scaling it by the ratio of the circumference of the search
circle that lies outside the window to the circumference of the search circle that lies
inside the window. Explicit formulas can be given for simple rectangular or circular
windows [4] but can be difficult to compute for non-standard window shapes. Also,
this correction assumes isotropy of points (our search area is a circle as opposed
to an ellipse), hence the name isotropic correction. If the degree of anisotropy is
known, one could first perform an appropriate projection of the points and use the
same method.
Another common edge correction method is translation correction [5]. Similar to

the isotropic correction, the naive K estimate is adjusted by a scaling factor. The
scaling factor is the proportion of the number of ways a pair of points x and y can
be translated and still remain in the window. One advantage of the translation
correction method is that it can be applied to windows of any shape, though it can
be more computationally intensive for windows of non-standard shape.
The last two methods are computationally prohibitive for large data sets but provide
us with an excellent opportunity to take advantage of parallel computing.

2 Parallel computation

For the past several years, computing power has plateaued due to physical con-
straints on the design of microchips which limits frequency scaling as a means of
increasing computing power. Instead, parallel computing, which uses multiple pro-
cessors to work concurrently to speed computation, has been the focus of research
and development in recent years. From a statistical computing perspective, high-
performance computing (HPC) that makes use of computer clusters consisting of
thousands of cores is one of the primary tools to compute intensive simulations and
calculations.
Two aspects of parallel computing are multithreading and multiple processing. The
main difference between multithreading and multiple processing is the memory ar-
chitecture. Multithreading involves dividing a single process into the work of multi-
ple computing threads. Each of these threads share the same memory architecture.
Multiple processing on the other hand divides a problem into smaller problems that
are then worked on independently by separate processors. Each processor sees only
it’s own memory structure and if required, can exchange information with other
processors. Multithreading provides a simpler method of parallelizing problems due
to all threads working on the same data but is limited in the amount of speed-
up possible. Multiple processing can scale almost linearly (ignoring communication
overhead) with the number of processors used but is more complicated to implement.
For the purposes of this paper, multiple processing is the primary focus. Currently
in R, there are several packages such as snow, doMPI, multicore, and foreach
that can ease parallel computations.

2.1 The parspatstat package

A package for the R statistical computing language [6] called parspatstat, has been
implemented to extend some of the functions in spatstat [1] in a parallel setting
by dividing the estimation into smaller portions while still maintaining proper edge
correction where appropriate. It is built on top of Rmpi [8], the R implementation
of the message passing interface (MPI) framework. In addition to computing tradi-
tional statistical summary functions in parallel, it can also speed up simulation of
envelopes for model checking and comparison. In additional, there is support for
the reading of large datasets in parallel to divide up a spatial point pattern into
smaller patterns that can fit locally onto each worker.
The Rmpi and spatstat packages are required to be set up and installed on all
computers that are to be included in the parallel environment (see respective doc-
umentation for instructions). First, one must either spawn the desired number of
workers (slaves) or launch through a batch job scheduler with the desired number

of workers before invoking any of the parallel functions in parspatstat. Any data
passed into the parallel functions of parspatstat are automatically propagated to
all workers but any other packages or dependencies that the workers require will
need to be loaded explicitly.

library(Rmpi)

mpi.spawn.Rslaves(nslaves=8) #spawn 8 workers

mpi.bcast.cmd(require(spatstat)) #have workers load spatstat library

2.2 Function usage

Names for parallel functions in parspatstat are the same as functions in spatstat
but with a par preceding it. For example, the K and L functions, Kest and
Lest, are parKest and parLest. For all functions, arguments are defined in the
same order and passed directly to their spatstat counterparts. A few additional
parameters specific to parallelization are required as well. One can refer to the
package documentation for details but most notably is the job.num parameter
which defines how many jobs to split the computation into whilst taking into account
edge correction methods. This parameter should typically be at least twice the size
of the number of workers available so that loads can be balanced to allow for a
more even distribution of computation time between processors. Load balancing is
further improved by sorting jobs by complexity and also by increasing the number
of jobs. However, more jobs also require more communication overhead one needs
to choose this parameter carefully.

2.3 Datasets that do not fit in memory

Occasionally we may encounter a dataset that is too large to fit into memory itself
and hence needs to be read in sequentially in chunks. As an illustrating example, the
lightning data set described in Section 3 is 400 megabytes and if we were working on a
system with less than 400MB of RAM allocated to the R process, we can get workers
to maintain portions of the dataset in chunks by passing a parppp object created
using parread.ppp to parKest argument. For example, if the 400MB lightning
datafile was called lightning.csv with a header indicating the x and y coordinates
as the 5th and 6th column, the following would compute the K function estimate
of the entire dataset across all years without ever having the entire dataset exist on
a single machine.

ltg <- parread.ppp(file="lightning.csv", xy=c(5,6), chunksize=1000,

header=TRUE, localname="ltgppp")

K.all <- parKest(X=ltg)

The manager will read in a chuck of data of size chunksize, and send the appropriate
rows of the data to each worker. The entire spatial window (user supplied or taken
as the smallest bounding box of the data) is divided into strips either horizontally
or vertically with the number of strips being equal to the number of workers. Each
strip is also extended by the maximum search radius r to ensure that each worker
has all the necessary data points to compute the K-estimate without having to
communicate with neighbouring workers.

When chunking in data, load balancing is no longer supported since all workers will
be required to have the entire dataset in its entirety between them. As such, chunk-
ing is beneficial when the original data cannot fit in memory of a single processor,
whether it be a manager or a worker. Chunking also reduces the communication
bandwidth required, but not necessarily the communication overhead.

3 Example: Ontario lightning data

A dataset of lightning strikes in the province of Ontario, Canada was obtained
from the Ontario Ministry of Natural Resources. This data consists of 15.4 million
lightning strikes from 1992-2010. In this example, an entirely enclosed square region
is taken from the years with the least lightning strikes, 2003, and the year with many
more lightning strikes, 2008. In each of these years, the number of data points in
the defined region is too large for the Kest to compute efficiently if we wish to
find edge corrected estimates. The following code snippet computes and plots the
edge-corrected K-estimates using the parKest function assuming we have already
initiated the workers as above. The resulting plots are given in Figure 1.

attach(lightning2003) #load the datasets

attach(lightning2008)

win <- owin(xrange=c(-84,-80), yrange=c(47,51)) #define obs. window

ppp.2003 <- ppp(x=lightning2003$V6, y=lightning2003$V5,window=win)

ppp.2008 <- ppp(x=lightning2008$V6, y=lightning2008$V5,window=win)

K.2003 <- parKest(X=ppp.2003, job.num=8*2)

K.2008 <- parKest(X=ppp.2008, job.num=8*2)

plot(K.2003)

plot(K.2008)

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

K$r

K
$t

he
o

theo
border
iso
trans

0.00 0.05 0.10 0.15 0.20 0.25

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

K$r

K
$t

he
o

theo
border
iso
trans

Figure 1: Plot of K-estimates of lightning strikes in a square region of Ontario in
2003 (left) and 2008 (right) using various border correction methods along with the
theoretical line.

4 Conclusion

This short paper discussed some of the intensive computations that exist in the
analysis of spatial point patterns and gave a short overview of the parspatstat R
package. This package is able to take advantage of parallel computing using the
Rmpi implementation of the MPI framework in order to speed up some of the
functions in the popular spatstat package. In addition, it also makes possible the
analysis of large spatial datasets that may not fit into memory. Both the func-
tion speed up and memory limitation increases almost linearly with the number of
processors used in parallel.
As of writing, version 0.1-3 of parspatstat is available for download on CRAN.
Future versions will add support for more functions.

References

[1] Baddeley, A. & Turner, R. (2005), “spatstat: An R Package for Analyzing Spatial
Point Patterns.” The Journal of Statistical Software, 12(6), 1-42.

[2] Baddeley, A., Kerscher, M., Schladitz, K. & Scott, B.T. (1999), “Esti-
mating the J function without edge correction.” ArXiv Mathematics e-prints,
arXiv:math/9910011.

[3] Cressie, N. (1991), “Statistics for Spatial Data.” New York, John Wiley & Sons.

[4] François, G. & Raphaël, P. (1999), “On explicit formulas of edge effect correction
for Ripley’s K-function.” Journal of Vegetation Science, 10, 433-438.

[5] Osher, J. & Stoyan, D. (1987), “On the second-order and orientation analy-
sis of planar stationary point processes.” Biometrical Journal, 23: 523533. doi:
10.1002/bimj.4710230602.

[6] R Development Core Team (2010), “A language and environment for statistical
computing.” R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-
900051-07-0, URL http://www.R-project.org.

[7] Ripley, B. D. (1976), “The Second-Order Analysis of Stationary Point Process.”,
Journal of Applied Probability, 13, 255-266.

[8] Yu, H. (2002), “Rmpi: parallel statistical computing in R.”, R News, 2(2), 10-14.

