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Abstact  
 
Fractional hot deck imputation, considered in Fuller and Kim (2005), is extended 
to  multivariate missing data. The joint distribution of the study items is 
nonparametrically estimated using a discrete approximation, where the discrete 
transformation also serves to define imputation cells.  The procedure first estimates the 
probabilities for the cells  and then imputes real observations for missing 
items. Calibration weighting is used to reduce the imputation variance. Replication 
variance estimation is discussed.    
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1. Introduction  
 

Item nonresponse occurs when a sampled unit provides some information but fails to 
respond to all items. Imputation, the substitution of values for missing data, is a very 
popular technique for handling item nonresponse. Hot deck imputation is an imputation 
procedure in which the value assigned for a missing item is taken from respondents in the 
current sample.Haziza (2009) and Andridge and Little (2010) provide comprehensive 
overviews of hot deck imputation methods in survey sampling. 

Fractional hot deck imputation was proposed by Kalton and Kish (1984) as a way of 
achieving efficient hot deck imputation. Kim and Fuller (2004) and Fuller and Kim (2005) 
provided a rigorous treatment of fractional hot deck imputation and discussed variance 
estimation. However, their approach is not directly applicable to multivariate missing 
data. Hot deck imputation for multivariate missing data with arbitrary missing pattern is a 
notoriously difficult problem because it is difficult to preserve the covariance structure in 
the imputed data.  Judkins et al. (2007) proposed an iterative hot deck imputation 
procedure that is closely related to the data augmentation algorithm of Tanner and Wong 
(1987). Judkins et al. (2007) did not provide variance estimators. Other non-hot-deck 
imputation procedures for multivariate missing data include the multiple imputation 
approach of Raghunathan et al (2001) and parametric fractional imputation of Kim 
(2011). The approaches of Judkins et al. (2007) and Raghunathan et al. (2001) are based 
on conditionally specified models and the imputation methods from the conditionally 
specified model are subject to the model compatibility problem (Chen, 2011). 
Conditional models for different missing patterns calculated directly from the observed 
patterns may not be compatible with each other. The parametric fractional imputation of 
Kim (2011) used the joint density to create imputed values, but the imputed values are 
artificial in that they may not be observed values from the sample. 

In this paper, we discuss extension of fractional hot deck imputation to multivariate 
missing data such that the covariance structures are well preserved and variance 



estimation is relatively easy. The proposed method is easy to understand and easier to 
implement than existing methods. Refinement of the procedure is required. 

 
 

2. Proposed method 
 
2.1 Transformation to integer-valued observations 
 

To discuss multivariate fractional hot deck imputation, suppose that we have a vector 
of K items, where𝐘𝒊 = (Y!! , Y!! ,⋯ , Y!") is the vector for the i-th individual. We write 
(Y!,!"#, Y!,!"#)  to denote the (observed, missing) part of Y in unit i. Because missing 
patterns can be different for different units, it is understood that 𝑚𝑖𝑠 = 𝑚𝑖𝑠(𝑖) ⊂
1,2,⋯ ,𝐾 . Ideally, the imputed values for Y!,!"# are generated from the conditional 

distribution f(y!,!"#|y!,!"#). Computation of such predictionrequires model specification 
and parameter estimation for the specified model. Instead of specifying the conditional 
distribution, we will consider the joint distribution without specifying a fully parametric 
joint model. 

The basic step in the proposed imputation is temporary replacement of the original data 
by a discrete approximation. Each continuous variable is transformed into a discrete 
variable by dividing the range into a small finite number of segments. Let 𝑌!"denote the 
discrete version of 𝑌!".One simple way of computing the discrete version is to divide the 
range into groups of equal length. Note that, if 𝑌! is observed then 𝑌! is observed. 
 
2.2 Estimated probabilities 
 

Once the 𝑌! are constructed, we use the observed value 𝑌!  to compute the joint 
probability of (𝑌!,𝑌!,⋯,𝑌!). The computation of the joint probability can be performed 
using a modified version of the EM algorithm. To facilitate discussion, let K=3. Let each 
variable have five categories. In practice there will be some categorical variables and 
those variables can have different number of categories. Let the population fraction 
falling in category rst be 𝜋!"#. We assume that all conditional probabilities are the same 
for the observed data as for missing data. That is, for example, P 𝑦!! = 𝑘!, 𝑦!! =
𝑘! 𝑦!! = 𝑘!) is the same for observed data as for data with (𝑦!!, 𝑦!!)missing. Thus, it is 
possible to estimate the 𝜋!"# and the conditional probabilities from the sample 
observations. We estimate positive probabilities for those cells with positive observed 
probabilities. For a particular missing configuration the conditional probability for each 
category of each missing variable can be computed. For example the probability that a 
unit with 𝑌! missing falls in category t is 

 
𝜋!"|! =

𝜋!"#
𝜋!"#!"

 

 
For an unequal probability sample, the conditional probabilities are computed using the 
sampling weights. 

In the EM algorithm, the E-step is essentially the same as applying fully efficient 
fractional imputation (FEFI) of Fuller and Kim (2005) using all possible combinations of 
imputed values. The imputed values for 𝑌!,!"# are taken from the support of 𝑌!"#(!) where 
the support of 𝑌!"#(!) is equal to that for the respondents. Let 𝑦!,!"#(!)∗ , (j = 1,⋯ ,𝑀!) be 
the set of possible values of 𝑌!,!"#(!) in the sample. Once the realized values 𝑌!,!"#(!) are 



imputed, we can use the idea of EM by weighting (Ibrahim, 1990) to compute the 
fractional weights. The fractional weight assigned to 𝑌!,!"# = 𝑦!,!"#(!)∗  at the t-th EM 
iteration is 

 
 𝒘𝒊𝒋(𝒕)

∗ =
𝝅𝒕(𝒚𝒊,𝒐𝒃𝒔,𝒚𝒋,𝒎𝒊𝒔 𝒊

∗ )

𝝅𝒕(𝒚𝒊,𝒐𝒃𝒔,𝒚𝒋,𝒎𝒊𝒔 𝒊
∗ )𝒋

  

 
(1)                    

   
where 𝜋!(y!,⋯ , y!) is the current value of the joint probabilities P(𝑌! = 𝑦!,⋯ ,𝑌! =
𝑦!) evaluated at the t-th EM algorithm. If unit i does not have any missing data, then 
𝑤!"(!)∗ = 1 . Computing fractional weights in (1) corresponds to E-step of the EM 
algorithm. Once the FEFI is constructed as above, the M-step is to update the joint 
probabilities by using the weighted average of the FEFI data using fractional weights. 
That is, 
 
 𝜋!!! y!,⋯ , y! =

w!!∈!
!! w!

!!
!!!!∈! 𝑤!"(!)∗ I y!"#∗ ,⋯ , y!"#∗ = 𝑦!   

 

 
(

(2) 
 

 
where w! is the sampling weight for unit i and y!"#∗  is the j-th imputed value for 𝑌!". If 
𝑌!"is observed, then y!"#∗  is the observed value. 
Given the probabilities a “fully efficient” estimator of the mean vector can be computed. 

Let y!,!"# be the mean for variable j in cell rst. Then the estimated mean of y is 
 

 𝛍𝐣 = 𝐲𝐣,𝐫𝐬𝐭
𝐭𝐬𝐫

𝛑𝐫𝐬𝐭. (
(3) 

   
2.3 Imputation 
 

Let y!" denote the cell value (1,2,3,4,5) of variable Y! for individual i. Let 𝐲! denote the 
y-vector for individual i. Let 𝛅! be the indicator for missingness for observation c, where 
the j-th element of 𝛅! is zero if 𝐲!" is missing. Let 𝐲𝐢 ∙ 𝛅!  be the element by element 
product. An observation that has no missing is a potential donor for observation c. 
Assume 5 values are to be imputed for each missing value. If there are 5 or more 
observations with no missing and 

 
  𝐲𝐭 ∙ 𝛅𝐜 =   𝐲𝐢 ∙ 𝛅𝐜  

 
then these observations form the donor set. If not, an additional operation is required to 
define the donor set. 

Given 𝛅! the conditional probabilities for each possible vector of imputed values can 
be calculated. A set of five donor cells is selected with probability proportional to the 
conditional probability. Then a donor is selected from each of the selected cells. 

Given the imputed values the imputed mean for 𝑦! is 
 



𝑦!,!"# = 𝑤!
!

!!

𝑤!𝑦!" =: 𝑤!∗𝑦!",!"#
!

.
!

 

 
Let  𝑦!,!"! be the estimator of (3). Note that 

 

𝑦!,!"# − 𝑦!,!"! = 𝑤!∗(
!∈!!,!"#

𝑦!",!"# − 𝑦!,!"!) 

 
where 
 

𝑦!,!"! = 𝑤!∗

!∈!!,!"#

𝑦! + 𝑤!∗

!∈!!,!"#

𝑦!,!"! 

 
and 𝑦!",!"# is the mean of imputed values for 𝑦! for element i. Compute the variance of 
𝑦!,!"# − 𝑦!,!"! under the assumption that the 𝑦!" are a simple random sample. If 

𝑉(𝑦!,!"# − 𝑦!,!"!)
!! 𝑦!,!"# − 𝑦!,!"!

!

!

 

exceeds, say, the 10 % point of a chi-squared distribution with k degrees of freedom the 
imputed values are rejected and a new set of donors selected. There are alternative 
rejection criteria that can be considered. 
 
2.4 Fractional weighting 
 

Given a set of donors that satisfy the restrictions, the regression procedure can be used 
to modify the weights to give the fully efficient estimator. 

In some cases, the number of fractional imputations for unit i,  𝑀!, can be quite large. 
In this case, computing all the joint probabilities may not be feasible. For example, if 
there are 100 items in the survey then computing all the joint probability is practically 
impossible. Because the joint probabilities are used to approximate the imputation model 
(the conditional model of missing data given the observed data), we have only to specify 
the imputation models (nonparametrically). The first step is to investigate the missing 
data patterns and then specify the set of variables needed for the imputation model. For 
example, suppose that we have (𝑌!,𝑌!,⋯ ,𝑌!") and only four missing patterns: (1) All 
observed, (2) Only 𝑌! missing, (3) Only 𝑌! missing, (4) Both 𝑌!and 𝑌! missing. In this 
case, we may have only to specify the set of variables that are related with  (𝑌!,𝑌!). Thus, 
for example, (𝑌!,𝑌!,𝑌!,𝑌!,𝑌!")  might be used to perform the FEFI method. The reduced 
model approach is appealing but there is a danger of having incompatible models when 
we specify different conditional models for many different missing patterns. Tools for 
model incompatibility may need to be developed. In some cases, we can use a log-linear 
model to fit a sparse model for the joint probability. For example, we can fit a sparse 
model for log 𝜋!"#  to obtain smoothed fractional weights. Such an approach can be used 
to construct a reduced imputation model. 

Once the imputation model is finalized and the imputation size 𝑀! is large, we can use 
the PPS sampling to obtain a reduced set of imputed values. Regression weighting can be 
used to preserve the marginal fractional weights. In the PPS sampling, the size measure is 
proportional to the original fractional weights after accounting for certainty selection. 
That is, we first select the candidates with 𝑤!"∗ > 1/𝑀 with certainty. 



 
2.5 Fractional imputation 
 

We now discuss how to perform fractional imputation for 𝑦!,!"#  using fractional 
imputation for 𝑦!,!"# . Given the value of  𝑦!",!"#∗ = 𝑦!,!"# , (j = 1,2,⋯ ,M), we can 
perform a single hot deck imputation from the donor set of observed units with the same 
value of 𝑦!,!"#(!). Here, the value of 𝑦!,!"#(!) can be used as an imputation cell. If at least 
one donor is identified from the set of fully responding units with 𝑦!,!"#(!) = 𝑦!",!"#(!)∗ , 
we can use the donor to obtain imputed values 𝑦!",!"#∗ = 𝑦!,!"#(!) for missing 𝑦!,!"#. If 
such a donor is not identified from the set of fully responding units, then we use hot deck 
imputation marginally using the marginal values of 𝑦!,!"#(!) (for each item separately). 
The discrete version preserves most of the correlation structure in 𝑌!, and the marginal 
hot deck imputation will perform well if there is no systematic variation within categories 
of 𝑌.  
 
 
3. Variance estimation  
 

We now consider variance estimation for the proposed fractional imputation estimator 
using a replication method. 
The replication variance estimator of 𝜃! takes the form of 
 

 
𝑽𝒓𝒆𝒑(  𝜽𝒏) = 𝒄𝒌 𝜽𝒏

(𝒌) − 𝜽𝒏
𝟐

𝑳

𝒌!𝟏

 (
(4) 

 
where L is the number of replicates, c! is the replication factor associated with replication 
k, and 𝜽𝒏

(𝒌) is the k th replicate of 𝜃!. If 𝜃! = 𝑦!/𝑛!
!!! , then we can write If 𝜽𝒏

(𝒌) =
𝑤!
(!)𝑦!!

!!!  for some replication weights 𝑤!
(!),𝑤!

(!),⋯ ,𝑤!
(!) . For example, in the 

jackknife method, we have L=n, 𝑐! = (𝑛 − 1)/𝑛 and 
 

𝑤!
(!) = 𝑛 − 1 !! if  𝑖 ≠ 𝑘

0 if  𝑖 = 𝑘
 

 
If we use the above jackknife method for If 𝜃! = 𝑦!/𝑛!

!!! , the resulting jackknife 
estimator in (4) is algebraically equivalent to 𝑛!! 𝑛 − 1 !! 𝑦! − 𝑦! !!

!!! . 
The replication method for fractional imputation consists of computing a replicated 

version of joint probability 𝜋, denoted by 𝜋(!), and then computing replicated fractional 
weights. For fractional weights of the form (1), we can use 
 

 
𝒘𝒊𝒋
∗(𝒌) =

𝝅(𝒌)(𝒚𝒊,𝒐𝒃𝒔  ,   𝒚𝒋,𝒎𝒊𝒔(𝒊)∗ )
𝝅(𝒌)(𝒚𝒊,𝒐𝒃𝒔  ,   𝒚𝒋,𝒎𝒊𝒔(𝒊)∗ )𝒋

 (
(5) 

 
to obtain initial replication fractional weights. If the initial fractional weights are 
modified by a regression weighting procedure, then the replicated fractional weight can 
be constructed similarly, using (5) as the initial fractional weights. 
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