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Abstract

In his “Comparative Statistical Inference”, Barnett (1982) investigates the various ap-
proaches towards statistical inference from a mathematical and philosophical perspec-
tive. There have been a few isolated endeavours to develop varied teaching approaches
of statistical inference. ‘Comparative statistical inference from an educational perspec-
tive’ is long overdue. After discussing Barnett, we give an overview on various at-
tempts to simplify the concepts for teaching. Informal inference is a major endeavour
among such projects; resampling and Bootstrap is a newer development in statistical
inference, which has also some appeal for teaching. In the light of Barnett’s compara-
tive evaluation we develop some essential alternatives for teaching like Bayes or non
Bayes. References to Barnett will illustrate that simple solutions might bias the con-
cepts. Rather than optimizing isolated approaches towards teaching statistical infer-
ence, a comparative educational study is suggested. The aim of such an investigation
is to highlight and compare relative merits and disadvantages of various approaches as
a consolidation piece to guide further research on teaching inferential statistics.

Key words: Statistics education, statistical inference, schools of probability, errors and
pitfalls, statistical thinking.

1. Introduction

Inferential statistics is the scientific method for evidence-based knowledge acquisition.
However, the logic behind statistical inference is difficult to understand. The methods
created for the purpose are based on advanced concepts of probability in combination
with different epistemological positions developed in the history of scientific reason-
ing. Approaches to statistical inference have been developed over the years. The clas-
sical significance test of Fisher and the statistical tests by Neyman and Pearson (in-
cluding sequential tests) were followed by decision theory introducing loss functions.
There are at least two more approaches: the Bayesian approach and the
re-randomization and bootstrap strand.

2. Comparative statistical inference

Barnett (1982) distinguishes the approaches to “statistical inference” and “decision
making”. Inference is a statement about a parameter of a distribution; decision making
includes a decision about such a parameter or a future action and involves the addi-
tional criterion of utility: while in inference one ignores the question of ‘how probable
is it that the estimation or test result is correct (or wrong)?’ in decision making prob-
ability and utility (impact) become central issues. The second criterion for grouping
the approaches is the way probability is perceived: whether probability is restricted to
the frequentist interpretation or is open to qualitative information, which will differ
from person to person.

The great controversy on the foundations of probability and a scientific justification of
methods for the inverse inference, i.e., the conclusion from statistical data to parame-
ters of the underlying probabilistic model, is signified by the characterization of prob-
ability. Stegmiiller (1973) has written the most comprehensive compendium from the
perspective of analytic science. He — in line with Kolmogorov’s intention — interprets
the usual axiomatic theory as justification of a frequentist interpretation of probability.



From this assured basis, he analyzes various approaches to the inverse inference:
amongst others, Fisher’s significance test, Neyman and Pearson’s test policy, Fisher’s
fiducial probability, and (comparative) Likelihood tests.

For all approaches, Stegmiiller puts their flaws to the fore, including his (favoured)
likelihood tests; he compares the Bayesian inverse inference (based on Bayes theorem)
against the other approaches, which are usually named classical statistics and which
refer to a conception of probability that is solely based on Kolmogorov’s axioms
(1933). The Bayesian inference has to go beyond a frequentist interpretation and is
derived from axioms on preferences and the so-called coherence, which lead to a dif-
ferent axiomatic theory of probability. The de Finetti (1937) approach justifies a
qualitative perception of probability, which all-too easily is interpreted as arbitrary as
it has genuine personal ingredients (see more on the historic development in Borovc-
nik & Kapadia, 2013). The crux is that this conception of probability is linked to a
complete different paradigm of science: as probability may also represent qualitative
information it can entirely be disconnected from (repeated) experiments, which are
seen as key to validation and improvement of models in the classical paradigm.

The gaps in rationality of all approaches towards the inverse inference thus lead to a
dilemma: either solve them by switching to a different (non-experimental) conception
of probability and open the way for subjective ingredients in scientific models, or re-
main within a conception of probability, which is closed within a theory that can be
validated by experiments. The decision of Stegmiiller (1973) was shared by the main
part of the statistics community: accept that methods for the inverse inference are im-
perfect and reject subjective elements in science. From Barnett (1982) one may de-
scribe the diversity of comparative inference by the following table, which classifies
the approaches by two categories, the type of probability involved and the type of
statements, which describe the conclusion from the data.

Framework

Probability Decision theory “— > Inference

Theoretical Wald (1950) Fisher significance test; fiducial intervals
frequentist Neyman-Pearson testing policy; repeated confidence intervals

subjectivist Bayes decision theory Bayesian inference

According to Fisher, P(E | H) is a discrepancy measure between the hypothesis H and
the data £ and lacks a frequentist interpretation. Alternatively, Neyman and Pearson
(NP) developed a quasi-decision-theoretic framework and compared the null Hy and
alternative hypothesis H;. Their rationale is to use a rejection rule V' (which consists of
a subset of the sample space) that guarantees P(V' | Hy) = « (size or type I error of the
test) and optimizes the type Il error function 1 — P(¥'| H)). In justifying the procedure,
Neyman reduced the involved conditional probabilities to plain relative frequencies of
a life-long testing policy. The more recent habit of using p values to describe the im-
pact of data on hypotheses is a strange hybrid between Fisher’ s non-frequentist dis-
crepancy measure and Neyman and Pearson’ s size of a test, which was reduced com-
pletely to a frequency interpretation.

A similar frequentist interpretation was attached to confidence intervals. Fisher de-
veloped his fiducial probability for confidence intervals, which should amount to a
theoretical probability that can be applied to the single intervals while the NP method
allows a probability statement for the long run rather than for single intervals. How-
ever, Fisher’s fiducial probability refers either to an awkward argument or to the im-
plicit use of prior distributions which would shift it to Bayesian inference (with an
inherent ‘logical’ or objective prior which should supersede a subjective prior). The
simplicity of the NP approach outweighed its evident flaws.

Stegmiiller (1973) showed clearly the gaps of rationality of the approach; however, the
so-called (favoured) likelihood tests share similar problems. Yet the final decision in
the foundations was in favour of a theoretical probability with a strong preference for
a frequentist interpretation and the classical procedures of statistical inference based
on such a probability concept.



3. Informal inference

While Barnett’s (1982) monograph might be perceived as a plea to use the methods in
parallel, teaching of statistics followed the narrow path of a pure frequentist interpre-
tation of probability and NP statistical inference. There was a fierce discussion about
teaching inferential statistics to students — the Bayesian way or in the classical tradi-
tion (Berry, 1997; Albert, 1997). Moore (1997) focussed his critique on his judgement
that Bayesian methods are too difficult for teaching. For applications, a more subtle
perception of Bayesian models in the sense of Berger (1985) paved the way to apply
them whenever they are useful, i.e., in case that there is not enough empirical data to
base the inverse inference upon.

As it also desirable to introduce methods of statistical inference to students in high
school, simplified approaches were advocated and developed. Via new technologies,
simulation has become accessible and replaced the mathematics of the inferential
methods, which lead to a strong connection of the involved (conditional) probabilities
to a primitive frequentist interpretation. Carranza and Kuzniak (2008) have analyzed
the consequences of such a biased attitude towards probability: It may confuse learn-
ers that the concepts introduced are frequentist (objective) while examples ask for
solving strategies that are linked to Bayesian methods and probabilities derived are
essentially subjective. Gigerenzer (2002) has searched for adequate representations to
simplify the solution. He transfers all (conditional) probabilities to expected numbers
which are presented either in tree diagrams or in two-way tables. By the embodiments
used, probabilities involved have an even higher (and false) degree of objectivity,
which is misleading in interpreting the relevance of the results. Borovenik (2012) has
analyzed conditional probability as a fundamental concept and refers to the impor-
tance of going beyond a frequentist interpretation to understand statistical inference.
The nonparametric approach (Noether, 1967) removed the requirement for families of
parametric probability distributions. First, one could derive a statistical test only by
calculating the test statistic on a finite set, which was established from equally likely
cases. Second, the null (effect) hypothesis attracts a natural embedding in the context.
Example. If data under two conditions (treatment and control) are used to test whether
treatment has a significant effect then the two data sets can be pooled under the hy-
pothesis of no effect. From this pool, a selection of the treatment group (the rest con-
stitutes the control group) establishes one possible result of the test statistic (difference
of means of original values or of ranks). Such a selection is also named
re-randomization. Under the hypothesis of no effect any such selection that is possible
has the same chance whence the test reduces to inspect all possible recruitments of the
treatment group and calculate the test statistic. For n; = 20 and n, = 15 this requires
looking at (35, 20) potential samples. The tedious search for all possible samples can
be substituted by random selection of a number of samples, which supply an empirical
estimate of the null distribution. The obvious advantage is the natural embedding of
Hp (null effect) into the context and the way to describe it by equally likely cases in-
stead of complicated distributions. The drawback lies in the lack of direct power con-
siderations (complement of type II error) as there is no adequate representation of
various ‘distances’ (in location) between the two groups without describing them by
parametric distributions (a task that was intended to avoid by the method).

The relations between « and S errors (type I and II) are essential to comprehend statis-
tical tests. As the basic ingredients are missing (about the type II error), the approach
can be no more than a transient state in teaching. The idea of nonparametrics was
taken up in what is called informal inference (e.g., Zieffler, et al, 2008). An informal
(as opposed to a formal) use of probability models may be seen in Borovcnik (2011).
Here, the parametric models are not circumvented; instead they are made accessible by
simulation in order to get an idea of how big a discrepancy between the presupposed
(hypothesized) model and the empirical data has to be in order to decide to exclude
this model from further considerations (which establishes a risk as the model could
still apply to the situation investigated) in order to simplify the range of models.



4. Resampling and Bootstrap

Key to resampling methods is that the original sample is used for an estimation of the
‘true’ distribution of the population. From this sample an estimate for one (nearly ar-
bitrary) parameter can be calculated. To evaluate this estimate, a resampling interval is
empirically derived from the Bootstrap distribution, which is gained by sampling from
the estimate of the distribution instead of the (unknown) distribution of the population.
The approach was developed by Efron and Tibshirani (1993). Its simplicity is attrac-
tive so that there is no wonder that statistics education took up the idea and tried to
develop teaching approaches: Borovcnik (2007) used also the analogy of repeatedly
‘measuring’ the unknown parameter (like measuring a physical quantity). More re-
cently, Engel (2010) and Pfannkuch and Wild (2012) have contributed suggestions.
The trouble with the approach seems to be that Bootstrap intervals are slightly biased;
to repair this defect, complicated mathematics is required (Lunneborg, 2000) so that
the approach leads to a dead-end. However, future research may well change such a
judgement on the merits of resampling for teaching.

5. Essential alternatives in teaching inferential methods

Following Barnett’s characterisation of comparative statistical inference, we go on to
discuss teaching issues formulated as alternatives.

Bayes or non Bayes. Since the controversy in the foundations has remained unresolved,
the alternative is wrongly put. The statistics community usually reduces probability to
a purely frequentist concept and derives the methods of statistical inference upon this
basis. Moore (1997) considered classical statistical methods as much easier to under-
stand — a very pragmatic view. Bayesians still promote the perception of probability
exclusively in a fundamental subjectivist sense. The unresolved controversy indicates
that neither approach has priority and probability genuinely has both objective and
subjective features, and to ignore either side would bias the concept. It might well be
appropriate to try a hybrid approach (as this author did for the Second Bayesian
Meeting in Valencia in 1994). However, this would cause confusion about the charac-
ter of the statements involved as the basic view on what is a scientific concept is so
different between these schools. Vancso (2009) has decided to teach both approaches
in parallel and join them in subsequent applications: A learner can see what is missing
with either approach and study the derived statements.

Decision theoretic or inferential perspective. From a teaching perspective, the ques-
tion is “Why do decision-theoretic viewpoints in the education of statistical inference
help to understand the concepts involved?” More recently, endeavours may be traced
to link even introductory probability with risk, i.e., to integrate considerations of im-
pact of possibilities (or decisions) right from scratch (see Nikiforidoru & Page, 2011).
Kahneman and Tversky (1979) have shown that judgements of probability are biased
especially if gain or loss is involved. For the introduction of probability, this author
prefers to calibrate the ‘feeling’ of probability without utility to establish a clear vision
of what specific probabilities really mean and introduce concepts of utility at a second
stage only. However, in order to demystify the essential concepts of type I and II er-
rors and the consequences of test decisions, it is quite revealing to embed the inferen-
tial situation into a decision-making context. It would also help to recognize that ques-
tions about the probability of wrong decisions or about the probability of a hypothesis
after data have led to its rejection have to remain unanswered. In the deci-
sion-theoretic framework such questions arise naturally and prompt the modeller to
find adequate answers.

Tests or confidence intervals within classical statistics. Some statisticians claim that it
is better to teach confidence intervals as the ‘logic’ of statistical tests is so complicated.
Maybe that such a view also arises from a desire to avoid the rationality gaps for sta-
tistical tests. However, the same gaps apply to confidence intervals (see Berger, 1985).
Furthermore, a purely frequentist interpretation of coverage probability of confidence
intervals applies only to the repeated intervals; a transfer to a single interval lacks any



justification. There is a variety of situations where a statistical test is essential. One
case is for testing for probabilistic assumptions like a test for the type of the distribu-
tion or for independence. Another case is methods like the analysis of variance by
which it becomes possible to test whether a specific factor is significant or not, i.e.,
whether its null effect can be rejected by a significance test or not. Confidence con-
siderations do not apply in such cases. As they include essential fields of applications,
a restriction to confidence intervals in teaching seems inappropriate.

6. Comparative inferential statistics from an educational perspective

We highlight essential issues in developing a comparative statistical inference for
teaching in the light of Barnett (1982).

Utility and loss. Barnett (1982, p. 99) refers amongst others to the following specific
consequences of integrating utility and loss functions into the framework “The re-
wards may contain many components. [...] Preferences will often be personal.” A fur-
ther complication arises out of infinite loss functions as are used normally.

The objectivity of models and the self-consistency of an objective approach. “The
whole question of model validation is a major one. All we will say here is that, in any
real-life study of such a problem, it is often not feasible to carry out a thorough valida-
tion. It is unlikely that adequate information would be available, and the model might
at best be justified on a combination of subjective and quasi-objective grounds. Inde-
pendence might be justified by arguments about the physical properties of the [phe-
nomenon studied].” (Barnett, 1982, p. 31).

Chicken and egg — a plea for conceptual flexibility. Kendall (1949, referenced in Bar-
nett, 1982, p. 94) refers to a basic dilemma: “The frequentist seeks for objectivity in
defining his probabilities by reference to frequencies; but he has to use a primitive
idea of randomness [...]. The non-frequentist begins by taking probability as a primi-
tive idea but he has to assume that the values which his calculations give to a prob-
ability reflect, in some way, the behaviour of events. ... Neither party can avoid using
the ideas of the other in order to set up and justify a comprehensive theory.” As nei-
ther conception is self-contained, the question ‘which is better?’ is wrongly put; for
enhancing probability a conceptually more flexible approach seems appropriate.
Decision theoretic perspective. Classical statistical procedures investigated from a
decision theoretic perspective reveal basic drawbacks as Barnett (1982, p. 261) states
introducing first a critique by Lindley and Smith (1972): “[...] many techniques of the
sampling-theory [that is, classical] school are basically unsound [...]. In particular the
least-squares estimates are typically unsatisfactory; or, [...] inadmissible in dimensions
greater than two.” Barnett continues: “Here is a strange juxtaposition!” Even if classi-
cal statistics is formulated without reference to losses, it reveals an unsatisfactory fea-
ture as it would unnecessarily shut the potential connection to decision theory — a
connection that is basically used to establish Neyman and Pearson’s test theory, which
is one of the main schools of testing within the classical position towards statistics.
Barnett’s conclusion for teaching. Barnett (1982, p. 307) summarizes his comparative
studies by: “Various attempts [...] to describe the role of the statistician. [...] One solu-
tion to the ubiquitous demands on the statistician is to encourage multi-disciplinary
team-work [...].” Newer approaches such as cross-validation shift to data analysis for a
short time but will require even more knowledge about its probabilistic modelling. He
concludes with “The teaching of statistics must continue to place major emphasis on
basic principles and concepts, and on their implications in the form of practical statis-
tical techniques. Exposure to the range of philosophical and conceptual attitudes to
statistical theory and practice must be an essential ingredient.” (p. 309).

Teaching statistical inference. Barnett remains unheeded. The statistics education
community strived to simplify the probabilistic foundation of statistical inference to-
wards a primitive frequentist interpretation; teaching at school level stopped dealing
carefully with conditional probability as it requires complicated calculation and in-
cludes other connotations of probability that hinder a straightforward progress. More



recently, the approach of informal inference has attracted some attention. While it
makes some aspects palatable for teaching, it reduces the complexity of statistical in-
ference to such a degree that it becomes difficult to discuss its drawbacks. Yet, a sub-
tle knowledge of conditional probability is decisive to perceive the involved errors.
Errors of type II (or, equivalently, power) can only be indirectly introduced. However,
power considerations are fundamental to evaluate a ‘decision’ made upon the empiri-
cal evidence used. The question for ‘a decision to be correct’ cannot be placed and
answered without integrating prior probabilities of hypotheses under test but these are
‘excluded’ as personal, subjective, and thus non-scientific. Too easily it is forgotten
that models can never be ‘objectively’ validated. A prime goal for statistics education
is to develop a comparative study of statistical inference from an educational point of
view as Barnett (1982) did for the scientific community. One promising idea may be
to link statistical inference to the more general process of scientific inference as was
suggested by Wild and Pfannkuch (1997). By our ‘late-breaking session’ we have
formulated a long-term project for the future: Rather than developing further isolated
approaches towards teaching inferential statistics in a simplified manner, this project
should elaborate on relative merits of various ways in the light of empirical research
on the impact of teaching and in the light of philosophy and applications.

References

Albert, J. (1997). Teaching Bayes’ rule: a data-oriented approach. The American Statistician, 51(3), 247-253.

Barnett, V. (1982). Comparative statistical inference. 2" ed. New York: Wiley.

Berger, J.O. (1985). Statistical decision theory and Bayesian analysis. 2" ed. New York: Springer.

Berry, D. A. (1997). Teaching elementary Bayesian statistics with real applications in science. The American Statisti-
cian, 51(3), 241-246.

Borovenik, M. (2007). On outliers, statistical risks, and a resampling approach towards statistical inference. Paper
presented at CERME 5). Larnaka.

Borovenik, M. (2011). Key properties and central theorems in probability and statistics — Corroborated by simulations
and animations. Special issue in Statistics of Sel¢uk J. of Applied Mathematics, 3-19. Online:
www.sumam.selcuk.edu.tr/specialissue-s.html.

Borovenik, M. (2012). Multiple perspectives on the concept of conditional probability. Avances de Investigacion en
Didactica de la Matematica, 2, 5-27. Online: www.aiem.es/index.php/aiem/issue/view/2.

Borovenik, M., & Kapadia, R. (2013). A historical and philosophical perspective on probability. In E. J. Chernoff, & B.
Sriraman (Eds.), Probabilistic thinking: presenting plural perspectives. New York: Springer.

Carranza, P. & Kuzniak, A. (2008). Duality of probability and statistics teaching in French education. In C. Batanero,
G. Burrill, C. Reading, & A. Rossman (Eds.), Joint ICMI/IASE Study: Teaching Statistics in School Mathemat-
ics.  Challenges  for  Teaching and  Teacher  Education. Monterrey: ICMI and IASE.
iase-web.org/Conference Proceedings.php?p=Joint ICMI-IASE Study 2008.

Efron, B., & Tibshirani, R.J. (1993). An introduction to the bootstrap. New York, Chapman & Hall.

Engel, J. (2010). On teaching bootstrap confidence intervals. In C. Reading (Ed.), Data and context in statistics educa-
tion: Towards an evidence-based society. Voorburg: International Statistical Institute. Online:
iase-web.org/Conference Proceedings.php?p=ICOTS_8§ 2010.

Finetti, B. de (1937). La prévision: ses lois logiques, ses sources subjectives. Annales Institut Henri Poincaré, 7, 1-68.
Foresight: Its logical laws, its subjective sources. In S. Kotz, & N.L. Johnson (1992), Breakthroughs in statis-
tics. Volume 1. Foundations and Basic Theory (pp. 134-174). New York, Berlin: Springer.

Gigerenzer, G. (2002). Calculated risks: How to know when numbers deceive you. New York: Simon & Schuster.

Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. Econometrica, XLVII,
263-291.

Kendall, M.G. (1949). On the reconciliation of theories of probability. Biometrika, 36, 101-116.

Lindley, D.V., & Smith, A.F.M. (1972). Bayes estimates for the linear model (with discussion). J. of the Royal Statis-
tical Society, Series B, 34, 1-41.

Lunneborg, C.E. (2000). Data analysis by resampling: concepts and applications. Pacific Grove, CA: Duxbury Press.

Moore D. S. (1997). Bayes for beginners? Some reasons to hesitate. The American Statistician, 51(3), 254-261.

Nikiforidou, Z. & Page, J. (2011): Risk taking and probabilistic thinking in preschoolers. In D. Pratt (Ed.), Working
Group on Stochastic Thinking. CERME 7.

Noether, G.E. (1967). Elements of nonparametric statistics. New York: Wiley.

Pfannkuch, M., & Wild, C. (2012). Laying foundations for statistical inference. Proc. of ICME 12. Seoul. Online:
www.icmel2.org/upload/submission/1883 F.pdf.

Stegmiiller, W. (1973). Probleme und Resultate der Wissenschafistheorie und Analytischen Philosophie, vol.4, first
part: Personelle Wahrscheinlichkeit und Rationale Entscheidung, second part: Personelle und statistische
Wahrscheinlichkeit. Berlin-New York: Springer.

Vansco, O. (2009). Parallel discussion of classical and Bayesian ways as an introduction to statistical inference. Inter-
national Electronic J. in Mathematics Education, 4(3), 291-322. Online: www.iejme.com/032009/main.htm.

Wald, A. (1950). Statistical decision functions. New York: Wiley.

Wild, C., & Pfannkuch, M. (1999). Statistical thinking in empirical enquiry. With discussion. International Statistical
Review, 67(3), 223-265.

Zieftler, A., et al. (2008). A framework to support research on informal inferential reasoning. Statistics Education
Research J., 7 (2), 40-48. Online: iase-web.org/documents/SERJ/SERJ7(2) Zieffler.pdf.


http://www.sumam.selcuk.edu.tr/specialissue-s.html
http://www.aiem.es/index.php/aiem/issue/view/2
http://iase-web.org/Conference_Proceedings.php?p=Joint_ICMI-IASE_Study_2008
http://iase-web.org/Conference_Proceedings.php?p=ICOTS_8_2010
http://www.icme12.org/upload/submission/1883_F.pdf
http://www.iejme.com/032009/main.htm
http://iase-web.org/documents/SERJ/SERJ7%282%29_Zieffler.pdf

