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Abstract 

The paper by Eugene, Lee and Famoye in 2002 pioneered the class of beta generated 
probability distributions. Since then, many members of the class have appeared in the 
literature along with their various properties and applications. The class was extended to 
the Kumaraswamy generated class. A more general class, the class of T-X distributions, 
was recently developed. This talk will address some of the important properties and 
applications of these different classes. The present challenges with the estimation of 
distribution parameters and some open problems will be mentioned. 
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1. Introduction 
 The books by Johnson, et al. (1994, 1995) contain a lot of probability distributions 
and in particular, volume 1 of these books detailed the early development of probability 
distributions. The development started with the Pearson system of continuous 
distributions. Some specific cases were considered in the literature. Another development 
was the Burr system (Burr, 1942), which led to the twelve different Burr type 
distributions. 
 In order to include skewness in the normal distribution, Azzalini (1985) introduced 
the skew normal family of distributions. A lot of developments in this area and others 
were recently reviewed by Lee et al. (2013). There are other notable developments in 
distribution theory. This talk will now focus on the beta-generated class and its 
subsequent extensions. 
 Eugene et al. (2002) used the beta distribution with shape parameters α and β to 
develop the beta-generated distributions. The cumulative distribution function (cdf) of a 
beta-generated random variable X is defined as 
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F x
G x b t dt= ∫ ,  (1) 

where b(t) is the probability density function (pdf) of the beta random variable and F(x) is 
the cdf of any random variable X. The pdf, when X is continuous, for to the beta- 
generated distributions in (1) is given by 
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If X is discrete, the probability mass function is given by g(x) = G(x) – G(x – 1). 
 One important property of this class is that it is a generalization of the distribution of 
order statistic for the random variable X with cdf F(x) as pointed out by Eugene et al. 
(2002) and Jones (2004). Since the paper by Eugene et al. (2002) in which the normal 
distribution was defined and studied, many papers have appeared in this class. These 
include beta-Fréchet (Nadarajah and Gupta, 2004), beta-Weibull (Famoye et al., 2005), 
beta-Pareto (Akinsete et al., 2008), β-Birnbaum-Saunders (Cordeiro and Lemonte, 2011), 
and beta-Cauchy (Alshawarbeh, et al., 2012). 
 Jones (2009) and Cordeiro and de Castro (2011) extended the beta-generated class by 
replacing the beta pdf in (1) with Kumaraswamy distribution, 1 1( ) (1 )b t x xα α βαβ − −= − , 
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(0,  1)x∈  (Kumaraswamy, 1980). The pdf of the Kumaraswamy-generated distributions 
(KW-G) is given by 
 1 1( ) ( ) ( )(1 ( ))g x f x F x F xα α βαβ − −= − .  (3) 
Many generalized distributions from (3) have been studied in the literature including the 
Kumaraswamy Weibull distribution (Cordeiro et al., 2010) and the Kumaraswamy 
generalized gamma distribution (de Castro et al., 2011). 
 The basic idea for the beta-generated and the Kumaraswamy-generated distributions 
is that the generator beta distribution or the Kumaraswamy distribution has a support of 
(0, 1), which is the same for any cdf F(x). Thus, the b(t) in (1) needs to be a distribution 
with support (0, 1). Alzaatreh et al. (2013a) generalized both the beta-generated and the 
Kumaraswamy-generated distributions by considering any distribution as a generator. 
 In section 2, we define the T-X families and in section 3, we discuss an example of a 
T-X distribution. In section 4, we mention some applications and conclude with section 5. 
 
2. The T-X families of distributions 
 Suppose ( )r t  is the pdf of a random variable [ , ]T a b∈ , for a b−∞ ≤ < ≤ ∞ . Let 
W(F(x)) be a function of the cdf F(x) of any random variable X so that W(F(x)) satisfies 
the following conditions: 
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The cdf of a new family of distributions is defined as 
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where W(F(x)) satisfies the conditions in (4) and R(t) is the cdf of the random variable T. 
The corresponding pdf associated with (5) is 
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. (6) 

Note that: 
• The pdf ( )r t  in (6) is “transformed” into a new cdf G(x) through the function, 

W(F(x)), which acts as a “transformer”. Hence, Alzaatreh et al. (2013a) referred to 
the distribution g(x) in (6) as transformed from random variable T through the 
transformer random variable X and called it “Transformed-Transformer” or “T-X” 
distribution. 

• The random variable X may be discrete and in such a case, G(x) is the cdf of a family 
of discrete distributions. 

Different W(F(x)) will give a new family of distributions. The definition of W(F(x)) 
depends on the support of the variable T. The following are some examples of W(.). 
1. When the support of T is bounded: Without loss of generality, we assume the support 

of T is (0, 1). Distributions for such T include uniform (0, 1), beta, Kumaraswamy 
and other types of generalized beta distributions. The distributions belong to the beta-
-generated class and they have been well studied. The function W(F(x)) can be 
defined as F(x) or ( ).F xα  

2. When the support of T is [a, ∞), a ≥ 0: Without loss of generality, we assume a = 0. 
The function W(F(x)) can be defined as ln(1 ( ))F x− − , ( ) / (1 ( ))F x F x− , 

ln(1 ( ))F xα− − , or ( ) / (1 ( ))F x F xα α− , where 0α > . 



 
 

3. When the support of T is (–∞, ∞): Examples of W(F(x)) are ln[ ln(1 ( ))]F x− − , 
ln[ ( ) / (1 ( ))]F x F x− , ln[ ln(1 ( ))]F xα− − , and ln[ ( ) / (1 ( ))]F x F xα α− . 

 
 Alzaatreh et al. (2013a) used ( ) ( )( ) log 1 ( )W F x F x= − −  to study a T-X family 
defined as 
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where R(t) is the cdf of the random variable T. The corresponding pdf from (8) is 
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where h(x) is the hazard function for the random variable X with the cdf F(x) and H(x) is 
the cumulative hazard function for X. Hence, the family of distributions can be 
considered as a family arising from a weighted hazard function. 
 Since ( )( ) log(1 ( ))G x R F x= − − , we have the following relationship between the 
random variables X and T: 
  1(1 )TX F e− −= − .  (10) 
The result in (10) provides an easy method to simulate the random variable X and it can 
also be used to determine the moments of X. For example, 1( ) [ (1 )]TE X E F e− −= − . 
 
 From (8), the quantile function ( )Q λ , 0 < λ < 1, for the T-X family of distributions is 
given by 

  ( )11 ( )( ) 1 RQ F e λλ
−− −= − .  (11) 

 
Theorem: If a random variable X follows the T-X pdf 

  ( )( )( )
( ) log 1 ( )
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g x r F x
F x

= − −
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,  

given in (9), then the Shannon entropy of X is given by 
  ( ){ }1log (1 )T

X T TE f F eη µ η− −− − += − ,  (12) 

where Tµ  and Tη  are the mean and the Shannon entropy for the variable T with pdf r(t). 
Proof: See Alzaatreh et al. (2013a) 
 Alzaatreh et al. (2013a) defined the sub-families gamma-X, beta-exponentiated-X and 
Weibull-X distributions. Among the special cases of the gamma-X sub-family are the pdf 
of the nth upper record value and the generalized gamma distribution defined and studied 
by Amoroso (1925). Among the special cases of beta-exponentiated-X sub-family are the 
beta-generated distributions, Kumaraswamy-generated distributions, the exponentiated-
Weibull distribution defined by Mudholkar et al. (1995), the exponentiated-exponential 
distribution defined by Gupta and Kundu (2001), and the type I generalized logistic 
distribution in Johnson et al. (1995, p. 140). A member of the Weibull-X sub-family, the 
Weibull-Pareto distribution, is discussed in the next section. 
 
3. Weibull-Pareto distribution 
 Alzaatreh et al. (2013b) defined and studied the Weibull-Pareto distribution. If a 
random variable T follows the Weibull distribution with parameters c and γ, then 

1( ) ( / )( / ) exp[ ( / ) ],  0c cr t c t t tγ γ γ−= − ≥ . The Weibull-X family is given by 
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If X is a Pareto random variable with pdf 1( ) ,  k kf x k x xθ θ− −= > , then the Weibull-
Pareto distribution is defined as 

  ( ){ } ( )( ){ }1
( ) ( / ) log / exp log / , ,  , , 0

c c
g x c x x x x cβ β θ β θ θ β θ

−
= − > > ,  (14) 

where /kβ γ= . The corresponding cdf to the pdf in (14) is given by 

  ( )( ){ }( ) 1 exp log /
c

G x xβ θ= − − .  

When θ = 1, the Weibull-Pareto distribution (WPD) reduces to the log-Weibull 
distribution defined by Sayana and Sekine (2004). When c = 1, the WPD reduces to the 
Pareto distribution with parameters β and θ. 
 Alzaatreh et al. (2013b) gave some properties of the WPD. The distribution is 
unimodal and it can be left or right skewed. The authors addressed two problems when 
using the maximum likelihood estimation (MLE) method for the WPD parameters. The 
first problem occurs when the parameter c < 1. The WPD likelihood function tends to 
infinity as θ goes to the sample minimum (1)x  and hence, when c < 1 and θ is estimated 

by (1)x , no MLE for c or β exists. The authors used an alternative MLE (AMLE) method 
proposed by Smith (1985). The second problem is when 1c . For this situation, the 
WPD is left skewed with a long tail which makes (1)x  a poor estimate for θ and this 
produces an unusually large bias in the AMLE for c and β. A modification of the regular 
MLE is proposed to deal with this large bias problem. 
 For AMLE, the log-likelihood function to maximize is 

(1)* (1)ln ( ; , , )
ix x iL g x x cβ≠Σ= . 

Observe that θ has been replaced with (1)x . The initial estimates for c and β are the 
moment estimates of Weibull distribution (Johnson et al., 1994, pp. 642-643). The 
sample minimum (1)x  is not a good estimate of θ when the WPD shifts from being a right 
skewed distribution to being a left skewed distribution. In summary, the simulation 
results by Alzaatreh et al. (2013b) showed that the AMLE method did not provide good 
estimates when c > 1. 
 In view of the problem with AMLE, Alzaatreh et al. (2013b) considered a modified 
MLE (MMLE) proposed by Smith (1985) for c > 1. The log-likelihood function to be 
maximized in this case is 1( , , ) ln ( ; , , )n

n i iL c g x cβ θ θ β== Σ , which is defined only for (1)x  

> θ. On differentiating ( , , )nL c β θ  with respect to the parameter θ, it is not difficult to 
show that the derivative is continuous when 0 < θ < (1)x  and so the derivative exits. The 
MMLE method showed considerable improvement over the AMLE in terms of bias. In 
order to compare the performance of AMLE and MMLE when c > 1, Alzaatreh et al 
(2013b) computed and compared the mean square error (MSE). The results indicated that 
MMLE consistently had smaller MSE than AMLE when c > 1. 
 In practice, one should first obtain a graphical display of the data. If the data has a 
reversed J-shape, we recommend the use of AMLE for estimation. Otherwise, we suggest 
the use of MMLE method, since biases are reduced dramatically when compared with 
AMLE. Further research is needed for developing better estimation method for the T-X 
family of distributions. 
 



 
 

4. Some applications 
 The beta-Pareto distribution (Akinsete et al. 2008) was applied to fit flood data. It 
outperformed the three-parameter Weibull distribution and the generalized Pareto 
distribution. The beta-Weibull distribution (Famoye et al., 2005) has a constant, a 
decreasing, an increasing, a bathtub, or a unimodal failure rate. The distribution was 
applied to fit various survival (complete or censored) data sets. 
 Alzaatreh et al. (2013b) fitted the WPD to three biological data sets and compared the 
fits with other known distributions. The results showed that the WPD gave a good fit to 
each data set and provided the best fit to the right and left tails. Alzaatreh et al. (2012) 
defined and studied the gamma-Pareto distribution. The distribution is unimodal and it is 
positively skewed. The distribution provided good fits to flood, reliability and biological 
data sets. 
 Cordeiro and Lemonte (2011) applied the beta-Birnbaum-Saunders distribution to 
three failure data sets: breaking stress of carbon fibres, number of successive failures for 
the air conditioning system in jet planes, and strengths of 1.5 cm glass fibres. The beta 
generalized Rayleigh distribution (Cordeiro et al. 2013) was found to provide good fits to 
life time data sets. de Castro et al. (2011) applied the Kumaraswamy-generated gamma 
distribution to right-censored life time data on 148 children contaminated with HIV. 
 Razzaghi (2009) used the beta-normal distribution in dose-response modeling and 
risk assessment. Razzaghi noted that the most important features of the beta-normal 
distribution is its generality and it encompasses a wide range of distributional shapes. 
Ortega et al. (2012) developed the negative binomial regression model to study the 
recurrence of prostate cancer and to predict the cure rate for patients. 
 
5. Conclusion 
Is the distribution theory still relevant? The answer to the question is emphatic YES 
based on the following reasons: 
Quite a large number of researchers continue to work on distribution theory and many are 
finding out that the new distributions are providing better fit than the existing 
distributions. In parametric modeling, like Poisson regression or negative binomial 
regression, these models are based on probability distributions and inferences on them are 
based on distribution theory. Recent developments in the beta-generated distributions 
have been successfully applied in statistical modeling. Other distributions in the T-X 
families are yet to be explored. 
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